
nationalgrid

2010 Annual Groundwater Sampling, NAPL Monitoring/ Recovery, and Groundwater Treatment Performance Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site Villages of Hempstead & Garden City Nassau County, New York

Prepared for: National Grid 175 East Old Country Road Hicksville, New York 11801

Prepared by: URS Corporation - New York 77 Goodell Street Buffalo, New York 14203

May 2011

2010 ANNUAL GROUNDWATER SAMPLING, NAPL MONITORING/RECOVERY, AND GROUDWATER TREATMENT PERFORMANCE REPORT

HEMPSTEAD INTERSECTION STREET FORMER MANUFACTURED GAS PLANT SITE VILLAGES OF HEMPSTEAD AND GARDEN CITY NASSAU COUNTY, NEW YORK

Prepared for:

National Grid 175 East Old Country Rd. Hicksville, NY 11801

Prepared by:

URS Corporation 77 Goodell Street Buffalo, New York 14203

May 2011

TABLE OF CONTENTS

Page No.

EXEC	CUTIVE	E SUMMARY	1
1.0	INTR	RODUCTION	1-1
2.0	FIEL	D ACTIVITIES	2-1
	2.1	Groundwater Depth and NAPL Thickness Measurements	2-1
	2.2	NAPL Recovery	2-1
	2.3	Ground Water Sampling	2-2
	2.4	Soil Vapor Sampling	2-2
	2.5	Groundwater Treatment System Performance	2-2
3.0	RESU	ULTS	3-1
	3.1	Dissolved-Phase Plume	3-1
	3.2	Potentiometric Heads and NAPL Thickness	3-1
	3.3	Groundwater Analytical Results	
	3.4	NAPL Recovery Volumes	
	3.5	Soil Vapor Analytical Results	
	3.6	Groundwater Treatment System Performance	3-3
4.0	SUM	MARY	4-4
Refer	ences		4-1

TABLES

(Following Text)

Table 1	Summary of 2010 Field Activities
Table 2	Groundwater and NAPL Measurements
Table 3	NAPL Recovery
Table 4	Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds
Table 5	Groundwater Treatment Performance Monitoring

FIGURES

(Following Tables)

Figure 1	Site Location Map
Figure 2	Site Map
Figure 2A	Soil Remediation and Groundwater Treatment Locations
Figure 3	Extent of Dissolved-Phase Plume and Groundwater Analytical Results
Figure 4	Potentiometric Surface Map for Shallow Groundwater, October 20-21, 2010
Figure 5	Potentiometric Surface Map for Intermediate Groundwater, October 20-21, 2010
Figure 6	Potentiometric Surface Map for Deep Groundwater, October 20-21, 2010
Figure 7	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, Fourth Quarter 2010
Figure 8	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, Third Quarter 2010
Figure 9	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, Second Quarter 2010
Figure 10	Total Dissolved-Phase BTEX and PAH Concentrations and Free Product Thickness, First Quarter 2010
Figure 11A	Well HIMW-01S NAPL Thickness and Cumulative Recovery Plot
Figure 11B	Well HIMW-011 NAPL Thickness and Cumulative Recovery Plot
Figure 11C	Well HIMW-06S NAPL Thickness and Cumulative Recovery Plot
Figure 11D	Well HIMW-06I NAPL Thickness and Cumulative Recovery Plot
Figure 11E	Well HIMW-07S NAPL Thickness and Cumulative Recovery Plot
Figure 11F	Well HIMW-11S NAPL Thickness and Cumulative Recovery Plot
Figure 11G	Well HIMW-111 NAPL Thickness and Cumulative Recovery Plot
Figure 11H	Well HIMW-16S NAPL Thickness and Cumulative Recovery Plot
Figure 11I	Well HIMW-16I NAPL Thickness and Cumulative Recovery Plot
Figure 11J	Well HIMW-17S NAPL Thickness and Cumulative Recovery Plot
Figure 11K	Well HIMW-18S NAPL Thickness and Cumulative Recovery Plot
Figure 11L	Well HIMW-18I NAPL Thickness and Cumulative Recovery Plot
Figure 11M	Well HIMW-19S NAPL Thickness and Cumulative Recovery Plot
Figure 11N	Well HIMW-19I NAPL Thickness and Cumulative Recovery Plot
Figure 11O	Well HIMW-21 NAPL Thickness and Cumulative Recovery Plot
Figure 11P	Well PZ-08 NAPL Thickness and Cumulative Recovery Plot
Figure 11Q	Well IPR-02 NAPL Thickness and Cumulative Recovery Plot

2010 ANNUAL GROUNDWATER SAMPLING AND NAPL MONITORING/RECOVERY REPORT

Figure 11R	Well IPR-05 NAPL Thickness and Cumulative Recovery Plot
Figure 11S	Well IPR-06 NAPL Thickness and Cumulative Recovery Plot
Figure 11T	Well IPR-09 NAPL Thickness and Cumulative Recovery Plot
Figure 11U	Well IPR-12A NAPL Thickness and Cumulative Recovery Plot
Figure 11V	Well IPR-15 NAPL Thickness and Cumulative Recovery Plot
Figure 11W	Well IPR-16 NAPL Thickness and Cumulative Recovery Plot
Figure 11X	Well IPR-17 NAPL Thickness and Cumulative Recovery Plot
Figure 11Y	Well IPR-18 NAPL Thickness and Cumulative Recovery Plot
Figure 11Z	Well IPR-20 NAPL Thickness and Cumulative Recovery Plot
Figure 11AA	Well IPR-21 NAPL Thickness and Cumulative Recovery Plot
Figure 11AB	Well IPR-22 NAPL Thickness and Cumulative Recovery Plot
Figure 11AC	Well IPR-23 NAPL Thickness and Cumulative Recovery Plot
Figure 11AD	Well IPR-24 NAPL Thickness and Cumulative Recovery Plot
Figure 11AE	Well IPR-25 NAPL Thickness and Cumulative Recovery Plot
Figure 11AF	Well IPR-26 NAPL Thickness and Cumulative Recovery Plot
Figure 11AG	Well IPR-27 NAPL Thickness and Cumulative Recovery Plot
Figure 11AH	Well IPR-28 NAPL Thickness and Cumulative Recovery Plot
Figure 11AI	Well IPR-29 NAPL Thickness and Cumulative Recovery Plot
Figure 11AJ	Well IPR-30 NAPL Thickness and Cumulative Recovery Plot

APPENDICES

(Following Figures)

Appendix A	Data Usability Summary Report
Appendix B	Soil Vapor Sampling Data (GEI Consultants)
Appendix C	Oxygen System Operation & Maintenance Measurements

ACRONYMS AND ABBREVIATIONS

amsl	above mean sea level
BTEX	benzene, toluene, ethylbenzene, xylenes
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen
DUSR	data usability summary report
ft	foot (feet)
LNAPL	light non-aqueous phase liquid
NAPL	non-aqueous phase liquid
ND	not detected
MGP	manufactured gas plant
NM	not measured
NYSDEC	New York State Department of Environmental Conservation
ORP	oxidation-reduction potential
PAHs	polycyclic aromatic hydrocarbons
QC	quality control
RI	remedial investigation
Sh	sheen
TOR	top of riser
URS	URS Corporation
USEPA	United States Environmental Protection Agency
µg/L	micrograms per liter

EXECUTIVE SUMMARY

This annual report provides a summary of field activities, analytical results, and data interpretations associated with groundwater sampling and recovery of non-aqueous phase liquid (NAPL) at the Hempstead Intersection Street Former Manufactured Gas Plant (MGP) site in 2010.

Groundwater monitoring and sampling was conducted on January 5-26, April 13-26, July 19-29, and October 21-28, 2010. This included measuring the depth to groundwater and NAPL thickness in up to 85 wells. Groundwater samples were collected from 21 wells and analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) and polycyclic aromatic hydrocarbons (PAHs). NAPL monitoring and recovery was conducted during 23 events between January to December 2010.

The following results were obtained from the groundwater sampling and NAPL monitoring/recovery events:

- The general direction of groundwater flow in shallow, intermediate, and deep waterbearing zones was south at an average gradient that ranged from approximately 0.002-0.003 feet per feet (ft/ft) in 2010.
- The dissolved-phase plume extended up to approximately 3,600 ft south of the site boundary in 2010.
- Dense non-aqueous phase liquid (DNAPL) was detected in 32 wells during the fourth quarter, 30 wells during the third quarter, 29 wells during the second quarter, and 28 wells during the first quarter of 2010. The wells were located on site or within a parking lot immediately south of the site.
- Approximately 719 gallons of NAPL have been recovered since April 2007. The volume of NAPL recovered from the site wells in 2010 varied from approximately 5 to 23 gallons per event. The approximate volumes of NAPL recovered were 86 gallons during the fourth quarter, 80 gallons during the third quarter, 54 gallons during the second quarter, and 69 gallons during the first quarter.

- Based on a comparison between the 2010 data and the previous data the concentrations of total BTEX and total PAHs remained stable in the site monitoring wells.
- The first of two oxygen injection systems was brought on line in October 2010 and has successfully promoted increased aerobic conditions in the aquifer near the system.

1.0 INTRODUCTION

This annual report summarizes potentiometric head measurements, NAPL thickness measurement and recovery activities, and groundwater quality sampling performed during the first, second, third, and fourth quarters of 2010 at the Hempstead Intersection Street Former MGP Site (refer to Figures 1 and 2). The results of Soil Vapor sample analyses and Groundwater Treatment Performance measurements collected throughout 2010 are also presented. Figure 2A shows the location of existing and proposed soil remediation and groundwater treatment activities.

Quarterly groundwater monitoring and bimonthly recovery of NAPL was initiated in April 2007. Separate reports have been issued for first, second, and third quarter activities performed in 2010 (URS 2010b, 2010c, 2010d). Results of the fourth quarter activities have not been presented in a separate quarterly report; instead, they are included in this annual report. Separate reports were issued for the first, second, and third quarter activities performed in 2009, and an annual report was issued that encompassed all four quarters of 2009 (URS 2009c, 2009d, 2009e, 2010a). Additionally, separate reports were also issued for the first, second, and third quarter activities performed in 2008, and an annual report was issued that encompassed all four quarters of 2008 (URS 2008b, 2008c, 2009a, 2009b). Separate reports were also issued for second and third quarter activities performed in 2007 (URS 2007, 2008a).

URS Corporation (URS) performed the following activities in 2010:

- Measured the depth to groundwater and NAPL thickness in all accessible monitoring wells (January 5-26, April 13-14, July 19-22, and October 20-21, 2010).
- Collected groundwater samples from a select group of monitoring wells for laboratory analysis (January 5-26, April 13-26, July 19-29, and October 21-28, 2010).
- Recovered NAPL from accessible monitoring wells and piezometers (January 10, January 26, February 8, February 20, March 7, March 20, April 11, April 26, May 23, June 9, June 25, July 7, July 22, August 2, August 19, September 2, September 17,

September 29, October 11, October 27, November 17, November 30, and December 14, 2010).

2.0 FIELD ACTIVITIES

The field activities performed by URS are summarized below.

- Measurement of the depth to groundwater and NAPL thickness in 85 monitoring wells.
- Collection of groundwater samples from 21 monitoring wells.
- Recovery of NAPL from accessible monitoring wells that contained measurable NAPL.

Monitoring wells and piezometers used for these activities are listed in Table 1.

2.1 <u>Groundwater Depth and NAPL Thickness Measurements</u>

Depths to groundwater and NAPL thickness measurements for 2010 are listed in Table 2. An electronic water level indicator was used to measure the depth to groundwater. NAPL thickness was measured using an oil/water interface probe and a weighted cotton string coated with oil indicator paste.

2.2 <u>NAPL Recovery</u>

Recovery of NAPL was conducted using the appropriate personal protective equipment. First, all accessible wells included in the recovery program were gauged using an oil/water interface probe to determine the depth to water, depth and thickness to any possible light nonaqueous phase liquid (LNAPL) at the top of the water column, and depth and thickness to possible DNAPL at the bottom of the water column. Wells with DNAPL were also gauged with a weighted cotton string to confirm the DNAPL thickness. The DNAPL was recovered using either a Waterra inertial lift pump, or a dedicated bailer if the DNAPL was particularly viscous, and was stored on an onsite storage tank or 55-gallon steel drums for subsequent offsite disposal.

The quantity of the recovered DNAPL was estimated as the volume of NAPL contained inside the well prior to pumping, based on the cross sectional area of the well screen multiplied by the measured NAPL thickness. NAPL was recovered during 5 events from October to December 2010 (Table 3).

2.3 <u>Ground Water Sampling</u>

Low-flow groundwater sampling methods were used, which consisted of purging groundwater at a rate of between 100 and 250 milliliters per minute. The water was pumped through a flow-through cell and monitored for pH, conductivity, turbidity, dissolved oxygen (DO), temperature, and oxidation-reduction potential (ORP). Purging was continued until stable conditions were achieved (defined as three consecutive stable readings [i.e. \pm 10 percent] over a 15 minute period). Groundwater samples were collected afterwards and shipped under chain-of-custody procedures to H2M laboratories, Inc. for analysis of BTEX (United States Environmental Protection Agency [USEPA] Method 8260B) and PAHs (USEPA Method 8270C). Purge water is stored in an onsite storage tank for subsequent offsite disposal.

2.4 <u>Soil Vapor Sampling</u>

Soil vapor sampling was conducted by GEI Consultants in the second quarter of 2010. Sampling occurred at three vapor points (HIVP-16, HIVP-17, and HIVP-18) within the community on June 11, 2010 (see Figure 2 for soil vapor point locations).

2.5 Groundwater Treatment System Operation

National Grid has completed the construction of one oxygen injection system and is nearing completion of a second system to treat groundwater in the downgradient plume. The completed system, designated "System No. 2", extends from Mirschel Park in the east to Kensington Ct. in the west. The system under construction, designated "System No. 1", is located along Smith St. a portion of the Long Island Railroad Right of Way, and a portion of Hilton Ave. See Figure 3 for the locations of the two systems. The performance of System No. 2 was monitored through measurement of oxygen levels in the groundwater approximately twice per month. The data is included in Appendix C and shows the system is effective in increasing the dissolved oxygen levels to augment biodegradation of dissolved phase MGP compounds in groundwater.

3.0 RESULTS

3.1 <u>Dissolved-Phase Plume</u>

The extent of the dissolved-phase groundwater plume boundary for the fourth quarter of 2010 is shown in Figure 3. The downgradient boundary of the plume, which is defined by total BTEX or PAH concentrations greater than 100 μ g/L, extends approximately 3,600 feet south of the site boundary. Based on comparison with previous quarterly groundwater monitoring data, the concentrations of total BTEX or PAHs in groundwater have remained stable.

In October 2010, the concentrations of total BTEX or total PAHs in the furthest downgradient well pair (HIMW-15I/D) ranged from "not detected" (deep well, HIMW-15D) to 30 μ g/L (intermediate well, HIMW-15I). The concentrations of total BTEX or total PAHs in wells located between the site and the HIMW-15 cluster varied from "not detected" to 3,152 μ g/L.

3.2 Potentiometric Heads and NAPL Thickness

Potentiometric heads and NAPL thickness measurements for 2010 are presented in Table 2. Potentiometric surface maps for shallow, intermediate and deep groundwater zones for the fourth quarter (Figures 4, 5, and 6) were developed using this data. Potentiometric surface maps for the first quarter, second quarter, and third quarter are provided in the previous quarterly reports (URS 2010g, 2010h, 2010i).

The data for 2010 indicates that the direction of groundwater flow was south at an average gradient that ranged from approximately 0.002-0.003 ft/ft.

DNAPL was detected in 32 wells during the fourth quarter, 30 wells in the third quarter, 29 wells in the second quarter, and 28 wells in the first quarter 2010 (Table 3). Figures 7 through 10 illustrate the thickness of DNAPL that was measured for the fourth, third, second, and first quarters of 2010.

Figures 11A through 11AJ provide cumulative NAPL recovery and NAPL thickness plots for the period of December 2003 to December 2010. All of the wells where DNAPL was identified are either on the site or within a parking lot that is immediately south of the site.

3.3 Groundwater Analytical Results

Groundwater analytical results for the fourth, third, second, and first quarters of 2010 are summarized in Table 4 and illustrated on Figures 7-10.

Quarterly Data Usability Summary Reports (DUSRs) were prepared following the guidelines provided in New York State Department of Environmental Conservation (NYSDEC) Division of Environmental Remediation DER-10, Technical Guidance for Site Investigation and Remediation, Appendix 2B - Guidance for the Development of Data Usability Summary Reports, May 2010. An electronic copy of the DUSR for the fourth quarter monitoring event is included as Appendix A. Electronic copies of the DUSRs for the first, second, and third quarter monitoring events are provided in the quarterly reports. The reviews included a review of holding times; completeness of all required deliverables; quality control (QC) results (blanks, instrument tunes, calibration standards, matrix spike recoveries, duplicate analyses, and laboratory control sample recoveries) to determine if the data is within the protocol-required QC limits and specifications; a determination that all samples were analyzed using established and agreed upon analytical protocols; an evaluation of the raw data to confirm the results provided in the data summary sheets; and a review of laboratory data qualifiers. All sample analyses were found to be compliant with the method and validation criteria and the data is useable as reported.

3.4 <u>NAPL Recovery Volumes</u>

Approximately 86 gallons of NAPL were recovered from 26 wells during the fourth quarter, approximately 80 gallons of NAPL recovered from 28 wells in the third quarter, approximately 54 gallons of NAPL from 22 wells in the second quarter, and approximately 69 gallons of NAPL from 22 wells in the first quarter of 2009 (Table 3). The volume of NAPL recovered during each event varied from approximately 5 to 23 gallons per event. Approximately 719 gallons of NAPL have been recovered since April 2007.

3.5 Soil Vapor Analytical Results

Soil vapor analytical results from the second quarter of 2010 can be found in Appendix B. Analytical results are compared to the NYSDOH Upper Fence Outdoor Air Concentrations.

3.6 <u>Groundwater Treatment System Performance</u>

The Groundwater treatment system started operation on October 11, 2010. Monitoring includes measurement of water depth, dissolved oxygen concentration, and headspace vapors by photoionization detector monitoring. A summary of the data collected is presented on Table 5.

The oxygen concentrations were initially reported in percent. However, since the aim of the project was to oxygenate the groundwater to levels much higher than 100% equilibrium with ambient air, measurement was switched to concentration in milligram per liter (mg/L) on the third monitoring event.

Through injecting ~90% oxygen into the aquifer, maximum dissolved oxygen concentrations in the range of 40 - 50 mg/L are possible. Concentrations in this range were noticed in the wells located most towards the center of the System #2 line of injection wells (monitoring points MP-2-3S and MP-2-3D), with lower concentrations observed at either end of the system.

Starting in mid-December, the system was operated to bias flow towards several wells in the western portion of the line because dissolved oxygen concentrations were lowest in MP-2-1 and MP-2-2. The target flow rate for wells in the western portion of the site was increased from 30 standard cubic feet per hour (scfh) to 50 scfh.

The performance of System No. 2 has been effective in raising the oxygen level sufficiently to support aerobic bacterial growth and attendant hydrocarbon degradation. Throughout all monitoring points, the dissolved oxygen level is above 5 mg/L, providing an aerobic environment. Measurement of dissolved oxygen levels below the 40 - 50 mg/L possible with ~90% oxygen gas at locations such as MP-2-2 suggests that bacterial activity is especially active; rapid consumption of the oxygen corresponds to rapid degradation of hydrocarbons, presumed to be primary carbon source for the bacteria.

4.0 SUMMARY

Following is a summary of the 2010 annual groundwater sampling and NAPL monitoring/recovery data presented in this report.

- The general direction of groundwater flow in shallow, intermediate, and deep waterbearing zones was south at an average gradient that ranged from approximately 0.002-0.003 ft/ft in 2010.
- The dissolved-phase plume extended up to approximately 3,600 feet south of the site boundary in 2010.
- DNAPL was detected in 32 wells during the fourth quarter, 30 wells during the third quarter, 29 wells during the second quarter, and 28 wells during the first quarter of 2010. The wells were located on site or within a parking lot immediately south of the site.
- Approximately 719 gallons of NAPL have been recovered since April 2007. The volume of NAPL recovered from the site wells in 2010 varied from approximately 5 to 23 gallons per event. The approximate volumes of NAPL recovered were 86 gallons during the fourth quarter, 80 gallons during the third quarter, 54 gallons during the second quarter, and 69 gallons during the first quarter.
- Based on a comparison between the 2010 data and the previous data, the concentrations of total BTEX and total PAHs remained stable in the site monitoring wells.
- Analytical results for soil vapor sampling conducted in the second quarter of 2010 are presented in Appendix B.
- The first of two oxygen injection systems was brought on line in October 2010 and has successfully promoted increased aerobic conditions in the aquifer near the system.

REFERENCES

- URS, 2007. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second and Third Quarters of 2007 (April 2007 and July-August 2007) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2008a. 2007 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2008b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2008 (January – March 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2008c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2008 (April - June 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. October.
- URS, 2009a. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2008 (July - September 2008) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. January.
- URS, 2009b. 2008 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. March.
- URS, 2009c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2009 (January - March 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. June.
- URS, 2009d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2009 (April - June 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.
- URS, 2009e. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2009 (July - September 2009) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. November.
- URS, 2010a. 2009 Annual Groundwater Sampling and NAPL Monitoring/Recovery Report for the Hempstead Intersection Street Former Manufactured Gas Plant Site. February.
- URS, 2010b. Groundwater Sampling and NAPL Monitoring/Recovery Report for the First Quarter of 2010 (January - March 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. April.
- URS, 2010c. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Second Quarter of 2010 (April - June 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. September.

URS, 2010d. Groundwater Sampling and NAPL Monitoring/Recovery Report for the Third Quarter of 2010 (July - September 2010) for the Hempstead Intersection Street Former Manufactured Gas Plant Site. December.

TABLES

Table 1Summary of 2009 Field Activities (1), (2)Water Level Measurements, NAPL Thickness Measurements, and Water Quality Sampling
Hempstead Intersection Street Former MGP Site

	Fourth Q	uarter (Oct-D	Dec 2010)	Third Qu	uarter (Jul-Au	ug 2010)	Second C	uarter (Apr-I	May 2010)	First Qu	arter (Jan-Ma	ar 2010)
Well ID	Water Level	NAPL Thickness	Water Quality									
HIMW-001S	X	X	Quality	X	X	Quanty	LOVOI	X	Quanty	X	X	Quality
HIMW-001I	Х	Х		Х	Х		Х	Х		Х	Х	
HIMW-001D												
HIMW-002S	Х			Х			Х					
HIMW-0021	X			X			X					
HIMW-002D HIMW-003S	X X		Х	X			X X		Х			
HIMW-003I	X		X	X	-		X		X			
HIMW-003D	X		X	X			X		X			
HIMW-004S	Х						Х			Х	Х	
HIMW-004I	Х			Х			Х					
HIMW-004D	X X		V	X		V	X X		V	V	V	V
HIMW-005S HIMW-005I	X		X X	X		X X	X		X X	X	X X	X X
HIMW-005D	X		X	X		X	X		X	~	^	X
HIMW-006S	X	Х	~	X	Х	~	X	Х	~~~~~	Х	Х	~
HIMW-006I	Х	Х		Х	Х		Х	Х		Х	Х	
HIMW-006D	Х			Х	Х			Х				
HIMW-007S	X	X		X	X		X	X		X	X	
HIMW-007I HIMW-007D	X X	X X		X	X X		X X	X X		X	X X	
HIMW-007D HIMW-008S	X	~	Х	X	~	Х	X	~	Х	X	X X	Х
HIMW-0083	X		X	X		X	X		X	X	X	X
HIMW-008D	Х		X	X		X	Х		X			X
HIMW-009S	Х			Х			Х					
HIMW-009I	Х			Х			Х					
HIMW-009D	Х			X			X		-			
HIMW-010S HIMW-010I	X X			X			X X					
HIMW-010D	X			X			X					
HIMW-011S	X	Х		X	Х		X	Х		Х	Х	
HIMW-011I	Х	Х		Х	Х		Х	Х		Х	Х	
HIMW-011D	Х						Х	Х				
HIMW-012S	Х		Х	Х		Х	Х		Х	Х	Х	Х
HIMW-012I	X		X	X		X	X		X	X	X	X X
HIMW-012D HIMW-013S	X X		X X	Х		Х	X X		X X	Х	Х	X
HIMW-0133	X		X	Х		Х	X		X	Х	Х	Х
HIMW-013D	X		X	X		X	X		X	X	X	X
HIMW-014I	Х		Х	Х		Х	Х		Х	Х	Х	Х
HIMW-014D	Х		Х				Х		Х			
HIMW-015I	Х		Х	X		X	X		X	X	Х	X
HIMW-015D	X X	v	Х	X	v	Х	Х	v	Х	X	X X	Х
HIMW-016S HIMW-016I	X	X X		X	X X			X X		X	X	
HIMW-017S	X	X		X	X			X		X	X	
HIMW-018S	X	X		X	X		Х	X		X	X	
HIMW-018I	Х	Х		Х	Х		Х	Х		Х	Х	
HIMW-019S	Х	X		X	X		X	X		X	X	
HIMW-019I	X X	Х	V	X	Х	V	X X	Х	v	X	X X	v
HIMW-020S HIMW-020I	X		X X	X		X X	X		X X	X	X X	X X
HIMW-0201	X	Х	~	X	Х	~	~	Х	~	X	X	Λ
PZ-02												
PZ-03												
PZ-08		Х		Х	Х		Х	Х		Х	Х	
IPR-01	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-02	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-03	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-04	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-05	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-06	Х	Х		Х	Х			Х		Х	Х	
IPR-07	Х	Х		Х	Х			Х		Х	Х	
IPR-08	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-09	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-10	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-11	Х	Х		Х	Х		Х	Х		Х	Х	

Table 1 Summary of 2009 Field Activities (1), (2) Water Level Measurements, NAPL Thickness Measurements, and Water Quality Sampling Hempstead Intersection Street Former MGP Site

	Fourth Q	uarter (Oct-D	Dec 2010)	Third Qu	Jarter (Jul-Au	ug 2010)	Second C	uarter (Apr-I	May 2010)	First Qu	arter (Jan-M	ar 2010)
Well ID	Water	NAPL	Water	Water	NAPL	Water	Water	NAPL	Water	Water	NAPL	Water
	Level	Thickness	Quality	Level	Thickness	Quality	Level	Thickness	Quality	Level	Thickness	Quality
IPR-12A	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-12B	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-13	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-14	Х	Х		Х	Х			Х		Х	Х	
IPR-15	Х	Х		Х	Х			Х		Х	Х	
IPR-16	Х	Х		Х	Х			Х		Х	Х	
IPR-17	Х	Х		Х	Х			Х		Х	Х	
IPR-18	Х	Х		Х	Х			Х		Х	Х	
IPR-19S												
IPR-19D	Х	Х		Х	Х			Х		Х	Х	
IPR-20	Х	Х		Х	Х			Х		Х	Х	
IPR-21	Х	Х		Х	Х			Х		Х	Х	
IPR-22	Х	Х		Х	Х			Х		Х	Х	
IPR-23	Х	Х		Х	Х			Х		Х	Х	
IPR-24	Х	Х		Х	Х			Х		Х	Х	
IPR-25		Х					Х	Х		Х	Х	
IPR-26	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-27	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-28	Х	Х		Х	Х		Х	Х		Х	Х	
IPR-29	Х	Х		Х	Х			Х		Х	Х	
IPR-30	Х	Х		Х	Х			Х		Х	Х	
IPR-31												
OSMW-01	Х	Х		Х	Х		Х	Х		Х	Х	
OSMW-02	Х	Х		Х	Х		Х	Х		Х	Х	
OSMW-03	Х	Х		Х	Х		Х	Х		Х	Х	

Notes:

Field marked with "X" indicates that the activity was performed.

1 2 Blank field indicates that the activity was not performed.

Table 1Summary of 2010 Field Activities (1), (2), (3)NAPL Product RecoveryHempstead Intersection Street Former MGP Site

		Four	th Quarter	r 2010		T		Thir	d Quarter	2010				Seco	nd Quarte	r 2010		First Quarter 2010					
Well ID	Dec. 14, 2010	Nov. 30, 2010	Nov. 17, 2010	Oct. 27, 2010	Oct. 11, 2010	Sept. 29, 2010	Sept. 17, 2010	Sept. 2, 2010	Aug. 19, 2010	Aug. 2, 2010	July 22, 2010	July 7, 2010	June 25, 2010	June 9, 2010	May 23, 2010	Apr. 26, 2010	Apr. 11, 2010	Mar. 20, 2010	Mar. 7, 2010	Feb. 20, 2010	Feb. 8, 2010	Jan. 26, 2010	Jan. 10, 2010
HIMW-001S	X	X	X		X	X	X		X		X		X	X	X	X				0		X	
HIMW-001I	Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		Х		0	Х	Х	Х
HIMW-001D																							
HIMW-002S																							
HIMW-002I																							
HIMW-002D																							
HIMW-003S HIMW-003I															-								ļ'
HIMW-003D																							
HIMW-003D																							¹
HIMW-0040																							
HIMW-004D																							
HIMW-005S																							
HIMW-005I																							
HIMW-005D																							
HIMW-006S	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х
HIMW-006I	Х		Х		Х	Х	Х		Х		Х		Х		Х	Х				0		Х	
HIMW-006D											Х					Х							
HIMW-007S	Х	Х	X	Х	Х	Х	Х	Х	X	Х	Х	Х	X	Х	Х	X	Х	Х	Х	0	Х	Х	Х
HIMW-007I	X		X		X		X		X		X		X		X	X				X		X	
HIMW-007D HIMW-008S	Х		Х		Х		Х		Х		Х		Х		Х	Х				Х		Х	
HIMW-0083																							¹
HIMW-008D																							
HIMW-009S																							
HIMW-009I																							
HIMW-009D																							
HIMW-010S																							
HIMW-010I																							
HIMW-010D																							
HIMW-011S	Х		Х		Х		Х		Х		Х		Х		Х	Х						Х	
HIMW-011I	Х		Х		Х		Х				Х		Х		Х	X						Х	!
HIMW-011D									Х						-	Х							ļ'
HIMW-012S HIMW-012I																							
HIMW-012D																							¹
HIMW-013S																							
HIMW-013I																							
HIMW-013D																							
HIMW-014I																							
HIMW-014D																							
HIMW-015I																							
HIMW-015D						1																	
HIMW-016S	Х		Х		Х	Х	Х		Х		Х	Х	X	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
HIMW-016I	X	V	X		X	Х	X	V	X		X	X	X	X	X	X	X	X	X	X	X	X	X
HIMW-017S	X	Х	X		X	v	X	Х	X	v	X	Х	X	X	X	X	Х	Х	Х	X	X	X	Х
HIMW-018S HIMW-018I	X X		X		X X	Х	X X		X X	Х	X X		X X	Х	X X	X X				O X	Х	X X	
HIMW-0181 HIMW-019S	X		X	ł	X	1	X	-	X		X		X	х	X	X	ł		ł	X	х	X	├ ───┤
HIMW-0195	X		X		X	1	X		X		X		X	^	X	X				X	^	X	
HIMW-020S	^		~	1		1			~	-	^		^	-			1		1		-	^	<u>├</u> ───┦
HIMW-0201						1																	
HIMW-21	Х	Х	Х	Х	Х	Х	Х		Х		Х		Х	Х	Х	Х	Х		Х		Х	Х	
PZ-02	l				1	Ī																	
PZ-03																							
PZ-08	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х

Table 1Summary of 2010 Field Activities (1), (2), (3)NAPL Product RecoveryHempstead Intersection Street Former MGP Site

		Four	th Quarter	2010				Thir	d Quarter	2010				Seco	nd Quarte	r 2010				First Qua	arter 2010		
Well ID	Dec. 14, 2010	Nov. 30, 2010	Nov. 17, 2010	Oct. 27, 2010	Oct. 11, 2010	Sept. 29, 2010	Sept. 17, 2010	Sept. 2, 2010	Aug. 19, 2010	Aug. 2, 2010	July 22, 2010	July 7, 2010	June 25, 2010	June 9, 2010	May 23, 2010	Apr. 26, 2010	Apr. 11, 2010	Mar. 20, 2010	Mar. 7, 2010	Feb. 20, 2010	Feb. 8, 2010	Jan. 26, 2010	Jan. 10, 2010
IPR-01	Х		Х		Х		Х		Х		Х					Х							
IPR-02	Х	Х	Х		Х	Х	Х	Х	Х		Х	Х	Х		Х	Х		Х		0		Х	Х
IPR-03	Х		Х		Х		Х		Х		Х					Х							
IPR-04	Х		Х		Х		Х		Х		Х					Х							
IPR-05	Х		Х		Х				Х		Х		Х			Х				0		Х	
IPR-06	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х
IPR-07	Х		Х		Х		Х		Х		Х					Х							
IPR-08	Х		Х		Х		Х		Х		Х					Х							
IPR-09	Х		Х		Х		Х		Х		Х		Х			Х				Х		Х	
IPR-10	Х		Х		Х		Х		Х		Х					Х							
IPR-11	Х		Х		Х		Х		Х		Х					Х							
IPR-12A	Х		Х		Х		Х		Х		Х		Х			Х				Х		Х	
IPR-12B	Х		Х		Х		Х		Х		Х					Х							
IPR-13	Х		Х		Х		Х		Х		Х					Х							
IPR-14	Х		Х		Х		Х		Х		Х		Х		Х	Х		Х				Х	
IPR-15	Х		Х		Х		Х		Х		Х		Х		Х	Х		Х		Х		Х	
IPR-16	Х		Х	Х	Х	Х	Х		Х		Х		Х		Х	Х		Х		Х	Х	Х	
IPR-17			Х		Х		Х		Х		Х		Х		Х	Х		Х		Х		Х	
IPR-18	Х		Х		Х		Х		Х		Х		Х		Х	Х		Х		Х		Х	
IPR-19S																							
IPR-19D	Х		Х		Х		Х		Х		Х		Х		Х	Х		Х		Х		Х	
IPR-20	Х	Х	Х		Х	Х	Х		Х		Х		Х		Х	Х		Х	Х	Х	Х	Х	
IPR-21	Х	Х	Х	Х	Х	Х	Х		Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
IPR-22	Х	Х	Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х
IPR-23	Х	Х	Х		Х		Х		Х		Х		Х		Х	Х		Х					
IPR-24	Х	Х	Х	Х	Х		Х		Х		Х		Х		Х	Х	Х	Х		Х	Х	Х	
IPR-25	Х	Х	Х	Х	Х	Х						Х	Х	Х	Х	Х	Х	Х	Х	0	Х	Х	Х
IPR-26			Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х						Х	
IPR-27	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х						Х	
IPR-28	Х		Х		Х		Х		Х		Х					Х							
IPR-29	Х	Х	Х	Х	Х		Х	Х	Х		Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	
IPR-30	Х	Х	Х		Х		Х		Х		Х					Х							
OSMW-01	Х		Х		Х		Х		Х		Х					Х							
OSMW-02	Х		Х		Х		Х		Х		Х					Х							
OSMW-03	Х		Х		Х		Х		Х		Х					Х							

Notes:

1 Field marked with "X" indicates that the activity was performed.

2 Field marked with "O" indicates that only NAPL monitoring was performed (no product recovery due to snow).

3 Blank field indicates that the activity was not performed.

Table 2Groundwater and NAPL MeasurementsFourth Quarter 2010Hempstead Intersection Street Former MGP Site

Well ID	Date	Elevation of TOR	Depth to LNAPL	Depth to Water	Depth to DNAPL	Well Depth	Thickness of LNAPL	Thickness of DNAPL (2)	Corrected Potentiometric Head ⁽¹⁾
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]
HIMW-01S	10/20/2010	71.61	ND	24.93	ND	40.9	0	0	46.68
HIMW-01I	10/20/2010	71.68	ND	25.06	85.55	85.9	0	0.3	46.62
HIMW-01D	NM	71.95	ND	NM	NM	129.1	0	NM	NM
HIMW-02S	10/20/2010	73.82	ND	27.04	ND	42.4	0	ND	46.78
HIMW-02I	10/20/2010	78.87	ND	27.11	ND	92.9	0	ND	51.76
HIMW-02D	10/20/2010	74.13	ND	27.34	ND	119.0	0	ND	46.79
HIMW-03S	10/20/2010	65.00	ND	18.44	ND	34.8	0	ND	46.56
HIMW-03I	10/20/2010	64.94	ND	18.66	ND	87.1	0	ND	46.28
HIMW-03D	10/20/2010	65.26	ND	19.22	ND	145.5	0	ND	46.04
HIMW-04S	10/20/2010	72.74	ND	26.86	ND	41.7	0	ND	45.88
HIMW-04I	10/20/2010	72.78	ND	26.96	ND	90.6	0	ND	45.82
HIMW-04D	10/20/2010	72.65	ND	27.48	ND	180.5	0	ND	45.17
HIMW-05S	10/20/2010	67.19	ND	21.18	ND	39.1	0	ND	46.01
HIMW-05I	10/20/2010	67.22	ND	20.92	ND	92.3	0	ND	46.30
HIMW-05D	10/20/2010	67.22	ND	21.87	ND	139.0	0	ND	45.35
HIMW-06S	10/20/2010	68.25	ND	22.09	35.00	36.9	0	1.9	46.16
HIMW-06I	10/20/2010	67.88	ND	21.73	82.17	82.2	0	0.01	46.15
HIMW-06D	10/20/2010	67.77	ND	21.51	ND	120.0	0	ND	46.26
HIMW-07S	10/20/2010	70.47	ND	24.18	39.84	40.7	0	0.90	46.29
HIMW-07I	10/20/2010	70.10	ND	24.18	ND	90.6	0	0	45.92
HIMW-07D	10/20/2010	70.40	ND	24.09	ND	117.7	0	0	46.31
HIMW-08S	10/20/2010	65.04	ND	19.52	ND	37.1	0	ND	45.52
HIMW-08I	10/20/2010	65.14	ND	19.68	ND	75.1	0	ND	45.46
HIMW-08D	10/20/2010	64.93	ND	19.48	ND	114.8	0	ND	45.45
HIMW-09S	10/20/2010	70.03	ND	24.03	ND	39.6	0	ND	46.00
HIMW-09I	10/20/2010	69.93	ND	23.99	ND	80.5	0	ND	45.94
HIMW-09D	10/20/2010	69.96	ND	24.08	ND	NM	0	ND	45.88
HIMW-10S	10/20/2010	71.60	ND	25.28	ND	40.3	0	ND	46.32
HIMW-10I	10/20/2010	71.47	ND	25.08	ND	91.8	0	ND	46.39
HIMW-10D	10/20/2010	71.44	ND	25.03	ND	136.0	0	ND	46.41
HIMW-11S	10/20/2010	71.62	ND	25.02	ND	41.6	0	0	46.60
HIMW-11I	10/20/2010	71.43	ND	24.85	ND	94.5	0	0	46.58
HIMW-11D	10/20/2010	71.39	ND	24.87	ND	123.6	0	ND	46.52
HIMW-12S	10/20/2010	61.58	ND	17.32	ND	33.5	0	ND	44.26
HIMW-12I	10/20/2010	61.59	ND	17.19	ND	75.0	0	ND	44.40
HIMW-12D	10/20/2010	61.82	ND	19.08	ND	128.5	0	ND	42.74
HIMW-13S	10/20/2010	72.83	ND	30.53	ND	49.2	0	ND	42.30
	10/20/2010	72.60	ND	30.92	ND	82.6	0	ND	41.68
HIMW-13D	10/20/2010	72.53	ND	30.27	ND	122.5	0	ND	42.26
HIMW-14I	10/20/2010	71.71	ND	29.45	ND	96.9	0	ND	42.26
HIMW-14D	10/20/2010	71.59	ND	31.49	ND	152.0	0	ND	40.10
HIMW-15I HIMW-15D	10/20/2010	64.18	ND ND	24.93	ND ND	93.1 155.0	0	ND ND	39.25 37.40
HIMW-15D HIMW-16S	10/20/2010	63.96 67.45	ND	26.56	29.61	34.4	0	4.8	46.13
HIMW-165	10/20/2010 10/20/2010	67.45	ND	21.32 21.40	77.46	82.7	0	4.0 5.2	46.13
HIMW-161	10/20/2010	65.96	ND	21.40	34.50	36.7	0	2.2	46.10
HIMW-175	10/20/2010	69.76	ND	20.10	42.02	42.1	0	0.1	45.66
HIMW-185	10/20/2010	69.70	ND	23.29	42.02 71.22	71.2	0	0.1	46.47
HIMW-181	10/20/2010	70.95	ND	23.20	39.38	39.4	0	0	46.83
HIMW-193	10/20/2010	70.95	ND	24.12	68.92	68.9	0	0	46.85
HIMW-191	10/20/2010	70.43	ND	24.32	00.92 ND	35.0	0	ND	40.95
HIMW-203	10/20/2010	70.43	ND	25.40	ND	73.0	0	ND	44.97

Table 2 Groundwater and NAPL Measurements Fourth Quarter 2010 Hempstead Intersection Street Former MGP Site

Well ID	Date	Elevation of TOR	Depth to LNAPL	Depth to Water	Depth to DNAPL	Well Depth	Thickness of LNAPL	Thickness of DNAPL	Corrected Potentiometric Head ⁽¹⁾
		[ft amsl]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft]	[ft amsl]
HIMW-21	10/20/2010	72.96	ND	19.73	34.75	35.3	0	0.5	53.23
PZ-02	NM	64.58	ND	NM	NM	29.5	0	ND	NM
PZ-03	NM	70.51	ND	NM	NM	35.5	0	ND	NM
PZ-08	10/11/2010	70.30	ND	23.88	41.14	41.9	0	0.8	46.42
IPR-01	10/21/2010	68.84	ND	23.42	ND	70.3	0	ND	45.42
IPR-02	10/20/2010	69.16	ND	22.11	44.62	44.7	0	0.05	47.05
IPR-03	10/20/2010	69.23	ND	22.51	ND	84.4	0	ND	46.72
IPR-04	10/20/2010	70.39	ND	22.62	ND	52.1	0	ND	47.77
IPR-05	10/20/2010	70.79	ND	24.80	55.30	55.4	0	0.1	45.99
IPR-06	10/20/2010	69.73	ND	24.26	37.62	38.0	0	0.4	45.47
IPR-07	10/20/2010	70.51	ND	23.71	ND	40.3	0	ND	46.80
IPR-08	10/20/2010	70.00	ND	24.13	ND	45.0	0	ND	45.87
IPR-09	10/20/2010	70.80	ND	23.61	ND	44.8	0	ND	47.19
IPR-10	10/20/2010	68.29	ND	24.32	44.62	44.6	0	0	43.97
IPR-11	10/20/2010	70.14	ND	21.99	38.10	38.1	0	0	48.15
IPR-12A	10/20/2010	69.56	ND	23.81	45.18	45.2	0	0	45.75
IPR-12B	10/20/2010	70.77	ND	23.24	44.41	44.4	0	0	47.53
IPR-13	10/20/2010	66.93	ND	24.38	44.42	44.4	0	0	42.55
IPR-14	10/21/2010	67.93	ND	20.66	44.40	44.4	0	0	47.27
IPR-15	10/21/2010	69.49	ND	21.41	49.05	49.1	0	0	48.08
IPR-16	10/21/2010	70.60	ND	23.14	53.71	54.1	0	0.4	47.46
IPR-17	10/21/2010	66.87	ND	24.19	49.95	50.0	0	0	42.68
IPR-18	10/21/2010	67.68	ND	20.73	45.12	45.1	0	0	46.95
IPR-19S	NM	67.96	ND	NM	NM	89.9	0	ND	NM
IPR-19D	10/21/2010	66.70	ND	21.78	45.40	45.4	0	0	44.92
IPR-20	10/21/2010	67.67	ND	20.64	44.06	45.0	0	0.9	47.03
IPR-21	10/21/2010	66.33	ND	21.58	44.20	45.4	0	1.2	44.75
IPR-22	10/21/2010	66.67	ND	20.41	43.20	45.4	0	2.2	46.26
IPR-23	10/21/2010	65.88	ND	20.70	44.35	44.4	0	0	45.18
IPR-24	10/20/2010	70.56	ND	20.08	43.90	44.5	0	0.6	50.48
IPR-25	NM	NM	ND	NM	NM	NM	0	1.5	NM
IPR-26	10/20/2010	NM	ND	23.48	ND	NM	0	0.01	NM
IPR-27	10/20/2010	NM	ND	24.21	ND	NM	0	0.5	NM
IPR-28	10/20/2010	NM	ND	21.71	ND	NM	0	0.01	NM
IPR-29	10/21/2010	NM	ND	20.03	ND	NM	0	1.1	NM
IPR-30	10/21/2010	NM	ND	21.01	ND	NM	0	0.8	NM
OSMW-01	10/20/2010	71.12	ND	24.41	ND	42.2	0	ND	46.71
OSMW-02	10/20/2010	71.59	ND	25.10	ND	45.2	0	ND	46.49
OSMW-03	10/20/2010	71.39	ND	24.99	ND	44.7	0	ND	46.40

Notes:

(1) Potentiometric heads in wells containing LNAPL are corrected

- using a specific gravity = 0.96
- DNAPL thicknesses measured on 10/11/2010. (2)

sheen Sheen = assumed thickness of 0.01 ft

NM not measured

- light non-aqueous phase liquid dense non-aqueous phase liquid LNAPL
- DNAPL
- TOR top of riser
- above mean sea level amsl
- ND NAPL not detected

Table 3 NAPL Recovery Fourth Quarter of 2010 Hempstead Intersection Street Former MGP Site

	December 14, 2010			-	ember 30, 2		-	ember 17, 2			tober 27, 20			tober 11, 2	
		Thickness	Volume	Thickness		Volume		Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume
Well ID	of LNAPL	of DNAPL		of LNAPL	of DNAPL		of LNAPL	of DNAPL		of LNAPL	of DNAPL		of LNAPL	of DNAPL	Removed
			(1)			(1)			(1)			(1)			(1)
	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-01S	0	0.40	0.07	0		0.10	0		0.00	NI	NI	0.00	0		
HIMW-01I	0	trace	0.00	NI	NI	0.00	0		0.08	NI	NI	0.00	0		0.05
HIMW-06S	0	1.00	0.16	0	2.80	0.46	-	0.00	0.11	0		0.08	0		
HIMW-06I	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
HIMW-07S	0	0.85	0.14	0	1.30	0.21	0		0.16	0		0.07	0		0.15
HIMW-07I	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
HIMW-07D	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
HIMW-11S	0	0.00	0.00	NI	NI	0.00	sheen		0.00	NI	NI	0.00	0		0.00
HIMW-11I	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
HIMW-16S	0	4.95	0.81	NI	NI	0.00	0		0.98	NI	NI	0.00	0		0.78
HIMW-16I	0	4.40	0.72	NI	NI	0.00	0		0.65	NI	NI	0.00	0		0.85
HIMW-17S	0	0.30	0.05	0	0.60	0.10	0		0.72	NI	NI	0.00	0		0.36
HIMW-18S	0	0.00	0.00	NI	NI	0.00	0		0.02	NI	NI	0.00	0		0.02
HIMW-18I	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
HIMW-19S	0	0.20	0.03	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
HIMW-19I	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
HIMW-21	0	1.20	1.76	0	1.00	1.47	0		1.32	0		1.76	0		0.73
PZ-08	0	1.00	0.16	0	1.50	0.24	0	-	0.18	0		0.16	0		0.13
IPR-02	0	trace	0.00	0	0.10	0.15	0		0.73	NI	NI	0.00	0		0.07
IPR-05	0	0.60	0.02	NI	NI	0.00	0		0.00	NI	NI	0.00	0		
IPR-06	0	0.80	1.18	0	0.95	1.40	0		0.88	0		2.94	0		0.59
IPR-07	0	trace	0.00	NI	NI	0.00	NI		0.00	NI	NI	0.00	NI		0.00
IPR-09	0	trace	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
IPR-12A	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
IPR-14	0	0.00	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
IPR-15	0	trace	0.00	NI	NI	0.00	0		0.00	NI	NI	0.00	0		0.00
IPR-16	0	1.00	1.35	NI	NI	0.00	0		0.00	0	1.00	1.35	0	0.10	0.54
IPR-17	NI	NI	0.00	NI	NI	0.00	0		0.13	NI	NI	0.00	0		0.00
IPR-18 IPR-19D	0	0.00	0.00	NI	NI	0.00	0		0.00	NI NI	NI	0.00	0		0.00
IPR-19D IPR-20	0	0.00	0.00	0	trace	0.00	0		0.00	NI	NI	0.00	0		0.00
IPR-20 IPR-21	0	1.00	0.44	0	trace 1.25	0.00	0		2.79	NI 0	0.80	0.00	0		1.32
IPR-21 IPR-22	0	0.00	0.00	0	1.25	2.28	0		2.79	0	0.80	1.32	0		3.23
IPR-22 IPR-23	0	0.00	0.00	0		2.28	0		3.08	0 NI	0.90 NI	0.00	0		0.00
IPR-23 IPR-24	0	0.60	1.32	0	0.60	0.00	0		0.00	0		1.18	0		0.00
IPR-24	0	1.60	2.35	0	1.05	1.54	0		2.20	0		2.20	0		2.20
IPR-25 IPR-26	0 NI	1.60 NI	2.35	0 NI	1.05 NI	0.00	0		0.00	0		2.20	0		0.00
IPR-26 IPR-27	0	0.80	1.18	0	0.60	0.00	0		0.00	0	trace	0.00	0		0.00
IPR-27 IPR-28	0		0.00	0 NI	0.60 NI	0.88	0		0.59	0 NI	Irace	0.00	0		0.73
IPR-28 IPR-29	0	trace 0.60	0.00	0	0.90	1.32	0		1.47	0		1.47	0		
IPR-29 IPR-30	0	5.50	0.88	0			0			0 NI	1.00 NI	0.00	0		
IF I1-30	-			-									-		
	Volume Re	movea	23.05	Volume Re	movea	13.74	Volume Re	emovea	19.41	Volume Re	movea	12.53	Volume Re	novea	17.5

Total volume recovered during the fourth quarter 2010: Total volume of NAPL recovered since April 2007: 86.24 gal 719.3 gal No product recovery due to pump malfunction

Notes:

NI - well not included in the product recovery program during this round

NA - No Access

LNAPL - light non-aqueous phase liquid

DNAPL - dense non-aqueous phase liquid

 Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping. All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter: All IPR monitoring wells (unless noted) and HIMW-21are 6-inch diameter: Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter: Monitoring wells IPR-05, IPR-07, and IPR-12A are 1-inch diameter:

Vol = 1.469 gal / lft of well screen. Vol = 1.349 gal / lft of well screen.

0.163 gal / Ift of well screen.

Vol = 1.349 gal / lft of well screen. Vol = 0.041 gal / lft of well screen.

Vol =

Table 3 NAPL Recovery Third Quarter of 2010 Hempstead Intersection Street Former MGP Site

	Sept	ember 29, 2	010	Sep	tember 17, 2	2010	Sep	tember 2, 2	2010	Au	ugust 19, 20	10	A	ugust 2, 201	0	,	luly 22, 201	0		July 7, 201	0
	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume
Well ID	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed
			(1)			(1)			(1)			(1)			(1)			(1)			(1)
	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-01S	0	0.01	0.00	0	0.50	0.08	NI	NI	0.00	0	0.01	0.00	NI	NI	0.00	0	0.05	0.01	NI	N	0.00
HIMW-01I	0	0.40	0.07	0	1.40	0.23	0	0.20	0.03	0	0.40	0.07	0	0.85	0.14	0	0.10	0.02	0	0.01	
HIMW-06S	0	2.90	0.47	0	2.90	0.47	0	5.00	0.82	0	3.00	0.49	0	6.00	0.98	0	4.30	0.70	0	2.11	
HIMW-06I	0	0.00	0.00	0	0.50	0.08	NI	NI	0.00	0	0.02	0.00	NI	NI	0.00	0	trace	0.00	NI	N	
HIMW-07S	0	1.20	0.20	0	1.80	0.29	0	0.35	0.06	0	1.20	0.20	0	1.40	0.23	0	0.70	0.11	0	0.90	
HIMW-07I	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
HIMW-07D	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
HIMW-11S	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
HIMW-11I	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
HIMW-16S	0	2.40	0.39	0	5.10	0.83	NI	NI	0.00	0	4.30	0.70	NI	NI	0.00	0	3.40	0.55	0	3.00	
HIMW-16I	0	5.00	0.82	0	4.80	0.78	NI	NI	0.00	0	3.80	0.62	NI	NI	0.00	0	3.80	0.62	0	3.40	
HIMW-17S	NI	NI	0.00	0	1.10	0.18	0	2.00	0.33	0	1.50	0.24	NI	NI	0.00	0	1.20	0.20	0	0.90	0.15
HIMW-18S	0	0.80	0.13	0	0.60	0.10	NI	NI	0.00	0	0.40	0.07	0		0.02	0	trace	0.00	NI	N	
HIMW-18I	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
HIMW-19S	NI	NI	0.00	0	0.10	0.02	NI	NI	0.00	0	trace	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
HIMW-19I	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
HIMW-21	0	0.40	0.59	0	1.10	1.62	NI	NI	0.00	0	1.20	1.76	NI	NI	0.00	0	0.40	0.59	NI	N	
PZ-08	0	0.10	0.02	0	0.10	0.02	0	trace	0.00	0	0.80	0.13	0	1.10	0.18	0	0.95	0.16	0	0.70	-
IPR-02	0	0.50	0.73	0	0.30	0.44	0	trace	0.00	0	0.80	1.18	NI	NI	0.00	0	0.80	1.18	0 NI	0.01	
IPR-05	NI	NI	0.00	NI	NI	0.00	NI	NI 0.70	0.00	0	1.20	0.05	NI 0	NI	0.00	0	1.70	0.07		N	
IPR-06 IPR-09	0 NI	0.60 NI	0.88	0	0.90	1.32	0 NI	0.70 NI	1.03	0	0.80	1.18	0 NI	1.00 NI	1.47	0	1.00	1.47	0 NI	5.00 N	-
IPR-09 IPR-12A	NI	NI	0.00	0	0.10	0.15	NI NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	trace trace	0.00	NI	N	
IPR-12A	NI	NI	0.00	0	0.00	0.00	NI	N	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
IPR-14	NI	NI	0.00	0	0.00	0.00	NI	N	0.00	0	trace	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
IPR-16	0	0.25	0.00	0	0.60	0.13	NI	NI	0.00	0	0.60	0.00	NI	NI	0.00	0	0.03	0.07	NI	N	
IPR-17	NI	0.23 NI	0.04	0	0.05	0.07	' NI	NI	0.00	0	0.00	0.13	NI	NI	0.00	0	trace	0.27	NI	N	
IPR-18	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	N	
IPR-19D	NI	NI	0.00	0	trace	0.00	NI	NI	0.00	0	trace	0.00	NI	NI	0.00	0	trace	0.00	NI	N	
IPR-20	0	0.05	0.07	0	0.20	0.00	NI	NI	0.00	0	0.50	0.73	NI	NI	0.00	0	0.14	0.00	NI	N	
IPR-21	0	1.30	1.91	0	0.20	1.32		NI	0.00	0	0.90	1.32	NI	NI	0.00	0	0.14	1.18	0	0.40	
IPR-22	NI	NI	0.00	0	1.15	1.69	0	1.20	1.76	0	2.40	3.53	0		1.62	0	1.10	1.62	0	0.85	
IPR-23	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	0.00 N	-
IPR-24	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.10	0.15	NI	NI	0.00	0	0.34	0.50	NI	N	
IPR-25	0	1.90	2.79	NI	NI	0.00	NI	NI	0.00	N	NI	0.00	NI	NI	0.00	NI	NI	0.00	0	1.10	
IPR-26	NI	NI	0.00	0	0.00	0.00	0	trace	0.00	0	0.30	0.44	0	0.15	0.22	0	trace	0.00	0	0.20	0.29
IPR-27	0	0.50	0.73	0 0	1.30	1.91	0	0.50	0.73	0	0.80	1.18	0		0.22	0	0.30	0.44	0	0.90	
IPR-29	NI	NI	0.00	0	1.20	1.76	0	0.75	1.10	0	0.60	0.88	Ň	NI	0.00	0	0.90	1.32	0	0.90	
IPR-30	NI	NI	0.00	0	0.50	0.73	NI	NI	0.00	0	0.30	0.44	NI	NI	0.00	NÎ	NI		NI	N	
	Volume Re	moved	10.14	Volume Re	emoved	15.35	Volume Re	moved		Volume Re	emoved	16.29	Volume Re	moved	5.07	Volume Re	moved	11.27	Volume Re	moved	15.53

Total volume recovered during the third quarter 2010: Total volume of NAPL recovered since April 2007: 79.51 gal 633.1 gal

Notes:

NI - well not included in the product recovery program during this round

NA - No Access

LNAPL - light non-aqueous phase liquid

DNAPL - dense non-aqueous phase liquid

 (1) - Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping.
 All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter:
 All IPR monitoring wells (unless noted) and HIMW-21are 6-inch diameter:
 Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter:
 Monitoring well IPR-05 and IPR-12A are 1-inch diameter:

- Vol = 0.163 gal / lft of well screen. Vol = 1.469 gal / lft of well screen.
- Vol = 1.349 gal / lft of well screen.
- Vol = 0.041 gal / lft of well screen.

Table 3 **NAPL Recovery** Second Quarter of 2010 Hempstead Intersection Street Former MGP Site

	Jı	une 25, 201	0		June 9, 201	0	Ν	May 23, 201	0		April 26, 201	0	A	April 11, 201	0
	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume	Thickness	Thickness	Volume
Well ID	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed
			(1)			(1)			(1)			(1)			(1)
	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-01S	0	trace	0.00	0		0.00	0		0.02	0			NI		
HIMW-01I	0	0.40	0.07	0		0.00	0	0.00	0.08	0	0.50	0.08	NI		0.00
HIMW-06S	0	1.30	0.21	0		0.34	0		0.54	0	3.20	0.52	0		0.87
HIMW-06I	0	0.80	0.13	NI	NI	0.00	0		0.00	0	0.00	0.00	NI	NI	0.00
HIMW-07S	0	0.80	0.13	0		0.24	0		0.17	0	0.70	0.11	0		0.41
HIMW-07I	0	0.00	0.00	NI	NI	0.00	0		0.00	0	0.00	0.00	NI		0.00
HIMW-07D	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	0	0.00	0.00	NI	NI	0.00
HIMW-11S	0	0.00	0.00	NI	NI	0.00	0		0.00	0		0.00	NI	NI	0.00
HIMW-11I	0	0.00	0.00	NI	NI	0.00	0		0.00	0		0.00	NI	NI	0.00
HIMW-16S	0	3.80	0.62	0	3.00	0.49	0		0.28	0	3.50	0.57	0		0.81
HIMW-16I	0	2.37	0.39	0		0.54	0		0.49	0	5.50	0.90	0		0.96
HIMW-17S	0	1.35	0.22	0	2.60	0.42	0	1.25	0.20	0	2.00	0.33	0	0.80	0.13
HIMW-18S	0	trace	0.00	0	trace	0.00	0	0.00	0.00	0	1.40	0.23	NI	NI	0.00
HIMW-18I	0	0.40	0.07	NI	NI	0.00	0		0.00	0	0.00	0.00	NI	NI	0.00
HIMW-19S	0	trace	0.00	0	trace	0.00	0	0.00	0.00	0	0.35	0.06	NI		0.00
HIMW-19I	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	0	0.00	0.00	NI		0.00
HIMW-21	0	trace	0.00	0	0.40	0.59	0	0.15	0.22	0	0.10	0.15	0	0.55	0.81
PZ-08	0	1.88	0.31	0	1.00	0.16	0		0.17	0	1.10	0.18	0		0.21
IPR-02	0	trace	0.00	NI	NI	0.00	0	trace	0.00	0	trace	0.00	NI		0.00
IPR-05	0	trace	0.00	NI	NI	0.00	NI		0.00	0	0.00	0.00	NI		0.00
IPR-06	0	2.55	3.75	0	1.00	1.47	0	1.25	1.84	0	0.70	1.03	0	0.45	0.66
IPR-09	0	0.00	0.00	NI	NI	0.00	NI	NI	0.00	0	trace	0.00	NI	NI	0.00
IPR-12A	0	0.00	0.00	NI	NI	0.00	NI		0.00	0	0.00	0.00	NI	NI	0.00
IPR-14	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	0		0.00	NI	NI	0.00
IPR-15	0	trace	0.00	NI	NI	0.00	0	1.010.0	0.00	0	trace	0.00	NI		
IPR-16	0	0.33	0.45	NI	NI	0.00	0	1.010.0	0.00	0		0.00	NI	NI	
IPR-17	0	trace	0.00	NI	NI	0.00	0		0.00	0		0.00	NI		
IPR-18	0	0.00	0.00	NI	NI	0.00	0		0.00	0	0.00	0.00	NI		
IPR-19D	0	0.00	0.00	NI	NI	0.00	0		0.00	0	trace	0.00	NI		
IPR-20	0	trace	0.00	NI	NI	0.00	0		0.00	0		0.00	NI		0.00
IPR-21	0	1.13	1.66	0		1.10	0		1.32	0		0.15	0		1.40
IPR-22	0	0.00	0.00	0		1.47	0		0.22	0	0.55	0.81	0		1.54
IPR-23	0	0.00	0.00	NI	NI	0.00	0		0.00	0	0.00	0.00	NI		0.00
IPR-24	0	trace	0.00	NI	NI	0.00	0		0.00	0	trace	0.00	0		0.07
IPR-25	0	1.80	2.64	0		2.20	0		2.50	0	1.30	1.91	0		2.06
IPR-26	0	trace	0.00	0		1.10	0		0.44	0	0.10	0.15	NI		0.00
IPR-27	0	0.40	0.59	0		0.88	0			0	trace	0.00	NI		0.00
IPR-29	0	2.00	2.94	0	0.50	0.73	0	0.75	1.10	0	trace	0.00	0	1.00	1.47
	Volume Re	moved	14.16	Volume Re	emoved	11.75	Volume Re	emoved	9.88	Volume Re	emoved	7.18	Volume Re	moved	11.40

Total volume recovered during the second quarter 2010: Total volume of NAPL recovered since April 2007:

54.37 gal

553.6 gal

Notes:

NI - well not included in the product recovery program during this round

NA - No Access

LNAPL - light non-aqueous phase liquid

DNAPL - dense non-aqueous phase liquid

(1) - Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping. All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter: All IPR monitoring wells (unless noted) and HIMW-21 are 6-inch diameter:

Vol = 0.163 gal / Ift of well screen.

Vol = 1.469 gal / Ift of well screen.

Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter: Monitoring well IPR-05 and IPR-12A are 1-inch diameter:

Vol = 1.349 gal / Ift of well screen. Vol = 0.041 gal / Ift of well screen.

Table 3 NAPL Recovery First Quarter of 2010 Hempstead Intersection Street Former MGP Site

	Ma	arch 20, 20 ⁻	0	N	larch 7, 201	0	Feb	oruary 20, 2	010	Fe	bruary 8, 20)10	Ja	nuary 26, 20	010	Ja	nuary 10, 20	010
		Thickness	Volume	Thickness		Volume	Thickness		Volume	Thickness	Thickness	Volume	Thickness		Volume	Thickness		
Well ID	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL		of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed	of LNAPL	of DNAPL	Removed
			(1)			(1)			(1)			(1)			(1)			(1)
	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]	[ft]	[ft]	[gal]
HIMW-01S	NI	NI	0.00	NI		0.00	0	0.40	0.00	NI		0.00	0		0.00	N		
HIMW-01I	0	0.40	0.07	NI		0.00	0	0.30	0.00	0	0.35	0.06	0	0110	0.07	0	0.63	
HIMW-06S	0	0.90	0.15	0		1.01	0	1.10	0.00	0	5.20	0.85	0	4.55	0.74	0	4.05	
HIMW-06I	NI	NI	0.00	NI		0.00	0	0.35	0.00	NI		0.00	0		0.00	N		0.00
HIMW-07S	0	0.60	0.10	0		0.33	0	1.55	0.00	0		0.17	0		0.20	0 0		
HIMW-07I	NI	NI	0.00	NI		0.00	0	0.00	0.00	NI	NI	0.00	0		0.00	N	NI	
HIMW-07D	NI	NI	0.00	NI		0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	N	NI	
HIMW-11S	NI	NI	0.00	NI		0.00	NI	NI	0.00	NI	NI	0.00	0	0.00	0.00	N	NI	
HIMW-11I	NI	NI	0.00	NI		0.00	NI	NI	0.00	NI	NI	0.00	0		0.00	N		
HIMW-16S	0	6.00	0.98	0		1.01	0	5.10	0.83	0	0.00	0.98	0		0.87	0	6.10	
HIMW-16I	0	8.00	1.31	0		1.08	0	2.80	0.46	0	5.50	0.90	0		0.93	0	5.20	
HIMW-17S	0	0.60	0.10	0 NI		0.52	0	1.65	0.27	0	1.85	0.30	0		0.51	0		-
HIMW-18S HIMW-18I	NI	NI	0.00	NI		0.00	0	0.45	0.00	0 NI	0.60 NI	0.10	0		0.11	N N	NI	
HIMW-180	NI	NI	0.00	NI		0.00	0	0.00	0.00	0		0.00	0	0.00	0.00		NI	0.00
HIMW-195 HIMW-19I	NI	NI	0.00	NI		0.00	0	0.00	0.00	0 NI	Irace	0.00	0	0.00	0.13	N N	NI	0.00
HIMW-191 HIMW-21	NI	NI	0.00	0		0.00	0 NI	0.00 NI	0.00	0	0.35	0.00	0	0.00	1.76			
PZ-08	0	0.40	0.00	0		0.00	0	1.30	0.00	0		0.51	0	-	0.20			
IPR-02	0	0.40	0.07	NI		0.21	0	0.35	0.00	NI		0.27	0	-	0.20		0.40	-
IPR-05	NI	0.20 NI	0.20	NI		0.00	0	1.75	0.00	NI	NI	0.00	0		0.06	N N	0.40 NI	
IPR-06	0	0.40	0.59	0		1.32	0	0.50	0.00	0		0.81	0	-	1.69			
IPR-09	NI	0.40 NI	0.00	NI		0.00	0	1.10	1.62	NI	0.55 NI	0.00	0	-	0.00	N N		-
IPR-12A	NI	NI	0.00	NI		0.00	0	0.00	0.00	NI	NI	0.00	0		0.00	N	NI	0.00
IPR-14	0	0.00	0.00	NI		0.00	NI	NI	0.00	NI	NI	0.00	0	0.00	0.00	N	NI	
IPR-15	0	0.00	0.00	NI		0.00	0	trace	0.00	N	N	0.00	0		0.00	N	NI	
IPR-16	0	trace	0.00	NI		0.00	0	0.05	0.07	0		0.54	0		1.28			
IPR-17	0	0.40	0.54	NI		0.00	0	trace	0.00	NI	NI	0.00	0		0.00	N		
IPR-18	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	N	NI	0.00
IPR-19D	0	trace	0.00	NI	NI	0.00	0	0.00	0.00	NI	NI	0.00	0	0.00	0.00	N	NI	0.00
IPR-20	0	trace	0.00	0	trace	0.00	0	0.75	1.10	0	0.30	0.44	0	0.60	0.88	N	NI	0.00
IPR-21	0	0.50	0.73	0	0.60	0.88	0	0.80	1.18	0	0.85	1.25	0	0.80	1.18	0	1.95	2.86
IPR-22	0	0.30	0.44	0	1.00	1.47	0	1.30	1.91	0	0.90	1.32	0	1.25	1.84	0	2.30	3.38
IPR-23	0	trace	0.00	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	N	NI	0.00
IPR-24	0	trace	0.00	NI		0.00	0	trace	0.00	0	0.55	0.81	0	0.60	0.88	N	NI	0.00
IPR-25	0	0.60	0.88	0		3.23	0	0.70	0.00	0	0.55	0.81	0	0.80	1.18	0	0.80	1.18
IPR-26	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	0	trace	0.00	N	NI	0.00
IPR-27	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	NI	NI	0.00	0	0.00	0.00	N	NI	
IPR-29	0	0.50	0.73	0	trace	0.00	0	0.55	0.81	0	0.30	0.44	0	2.15	3.16	6 N	NI	0.00
	Volume Re	moved	6.97	Volume Re	emoved	11.07	Volume Re	moved	8.24	Volume Re	emoved	10.55	Volume Re	emoved	17.80	Volume Re	emoved	14.17

Total volume recovered during the first quarter 2010: Total volume of NAPL recovered since April 2007: 68.80 gal 499.2 gal No product recovery due to excessive snow cover

Notes:

NI - well not included in the product recovery program during this round

NA - No Access

LNAPL - light non-aqueous phase liquid

DNAPL - dense non-aqueous phase liquid

 Volume of product recovered estimated by multiplying the cross sectional area of well screen by the thickness of product layer measured prior to pumping. All HIMW (unless noted) and PZ monitoring wells are 2-inch diameter: All IPR monitoring wells (unless noted) and HIMW-21are 6-inch diameter:

Vol = 0.163 gal / Ift of well screen.

Vol = 1.469 gal / Ift of well screen. Vol = 1.349 gal / Ift of well screen.

Monitoring wells IPR-16 and IPR-17 are 5.75-inch diameter: Monitoring well IPR-05 and IPR-12A are 1-inch diameter:

Vol = 1.349 gal / lft of well screen. Vol = 0.041 gal / lft of well screen.

Table 4

Dissolved-Phase Concentrations of Total BTEX and Total PAH Compounds Data Collected in 2010 Hempstead Intersection Street Former MGP Site

Well ID	Fourth Quar October 21-		Third Quar July 22-29		Second Qu April 13-		First Qua January 5	
Weil ID	BTEX [ug/L]	PAH [ug/L]	BTEX [ug/L]	PAH [ug/L]	BTEX [ug/L]	PAH [ug/L]	BTEX [ug/L]	PAH [ug/L]
HIMW-001D	[39, -]	[29,2]	[39, 2]	[09,2]	[09,2]	[29, -]	[09, -]	[39,2]
HIMW-0011								
HIMW-001S								
HIMW-002D								
HIMW-002I								
HIMW-002S								
HIMW-003D	ND	ND			ND	ND		
HIMW-0031	ND	ND			ND	ND		
HIMW-003S HIMW-004D	ND	ND			ND	ND		
HIMW-004D HIMW-004I								
HIMW-0041 HIMW-004S								
HIMW-0045	216	1,728	359	2,344	228	1,309	108	1,722
HIMW-005D	154	3,152	186	2,949	149	2,421	166	3,047
HIMW-005S	ND	ND	ND	ND	ND	ND	ND	ND
HIMW-006D								
HIMW-006I								
HIMW-006S								
HIMW-007D								
HIMW-007I								
HIMW-007S								
HIMW-008D	ND	ND	ND	ND	ND	ND	ND	ND
HIMW-0081	ND	ND	ND	ND	ND	ND	ND	ND
HIMW-008S	ND	1	ND	3	ND	2	ND	14
HIMW-009D								
HIMW-0091								
HIMW-009S HIMW-010D								
HIMW-010D								
HIMW-010S								
HIMW-011D								
HIMW-011I								
HIMW-011S								
HIMW-012D	ND	ND	ND	ND	ND	ND	ND	ND
HIMW-012I	52	118	54	125	54.1	133	40	124
HIMW-012S	6	ND	ND	ND	7.5	ND	ND	ND
HIMW-013D	6	19	4	17	5.9	21	5	18
HIMW-013I	103	133	313	104	305	133	206	85
HIMW-013S	ND	ND			ND	ND		
HIMW-014D	ND	ND 51	41	22	ND 42.6	ND	41	06
HIMW-014I HIMW-015D	24 ND	51 ND	41 ND	32 ND	43.6 ND	37 ND	41 ND	26 ND
HIMW-015D HIMW-015I	ND 24	30	20	ND 29	18	24	9	11
HIMW-0151	<u> </u>		20	2.5			3	
HIMW-016S								
HIMW-017S								
HIMW-018I								
HIMW-018S								
HIMW-019I								
HIMW-019S								
HIMW-020I	182	438	132	230	192.6	209	176	221
HIMW-020S	ND	ND	ND	ND	ND	ND	ND	ND
PZ-02								
PZ-03 PZ-08								
PZ-08								

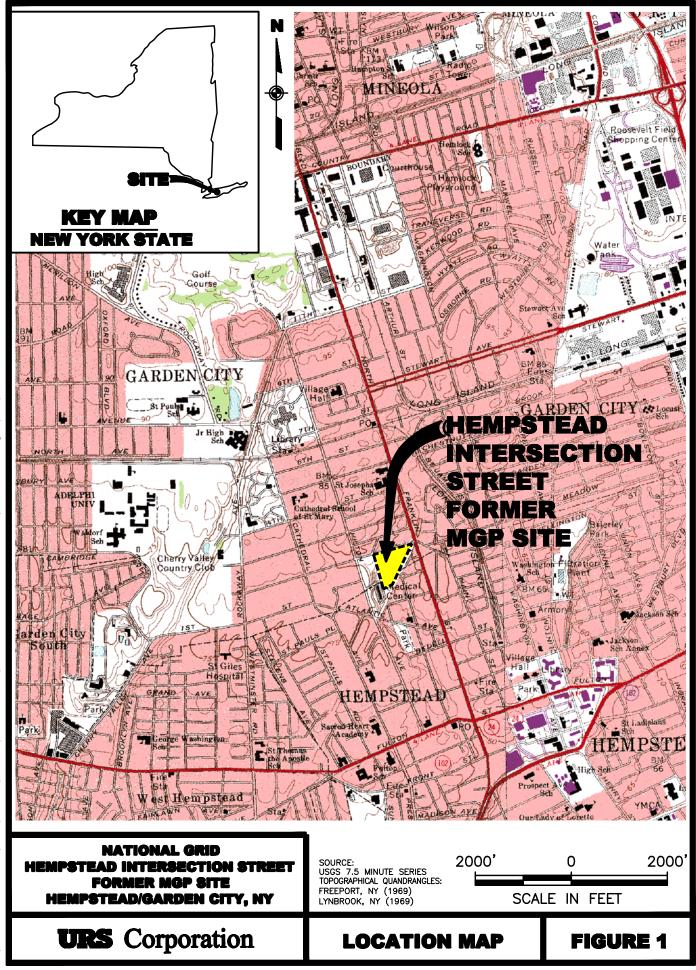
Notes:

A blank field is "Not Sampled". NAPL is periodically identified in this well. Not Detected.

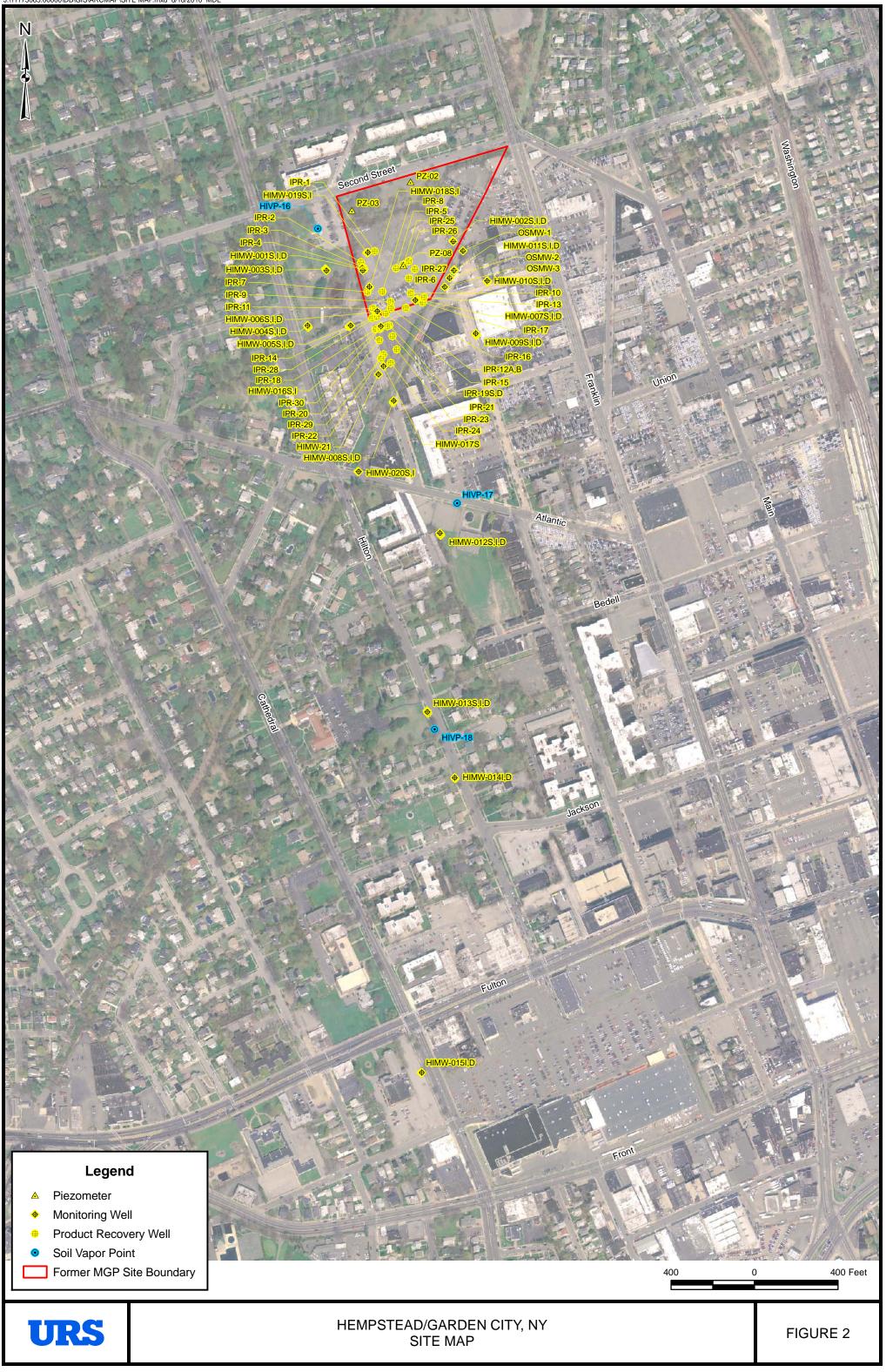
ND

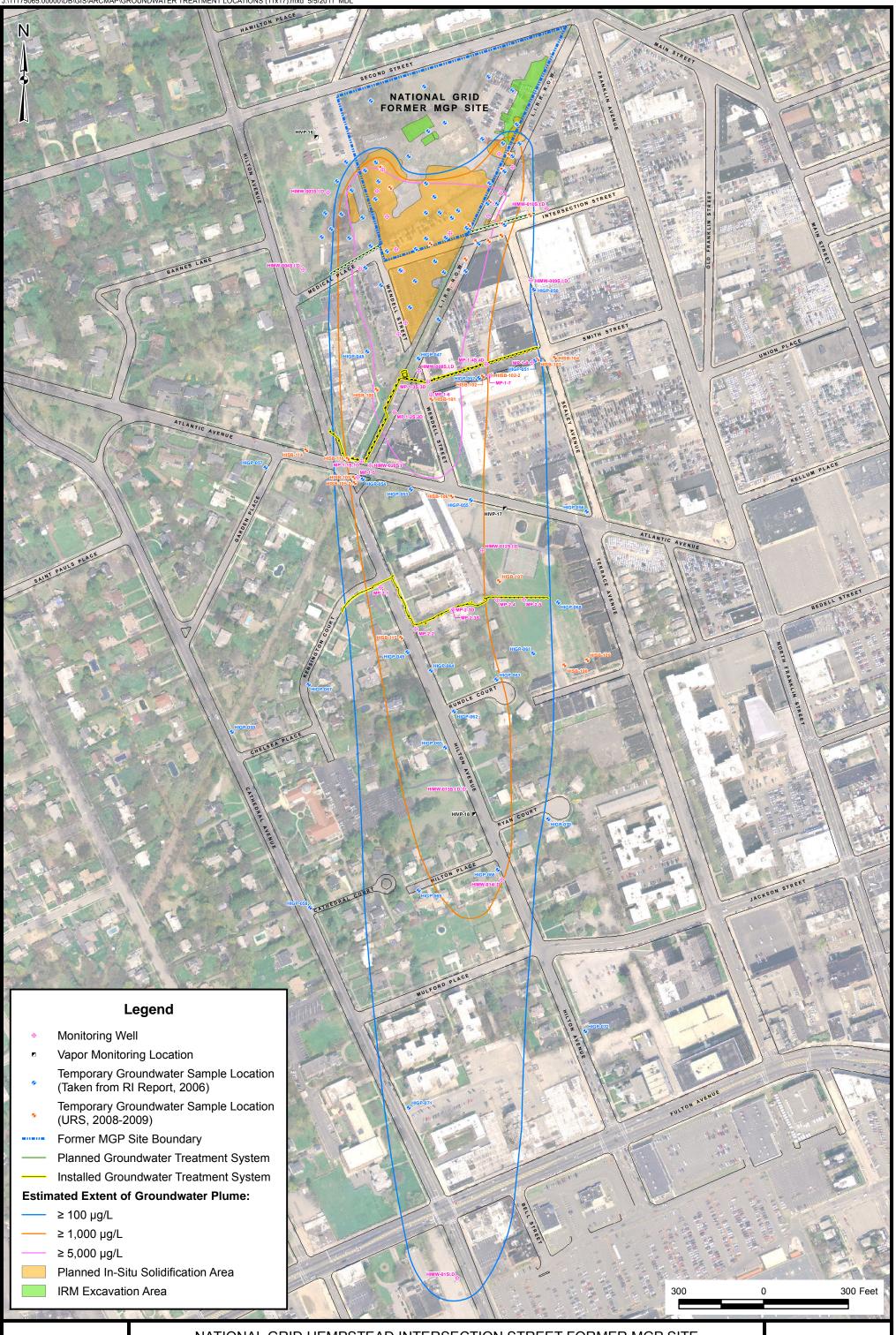
ug/L micrograms per liter

Table 5 Groundwater Treatment Performance Monitoring Fourth Quarter 2010 Hempstead Intersection Street Former MGP Site


		10/11/2010)		10/14/2010)		10/20/2010)		11/3/2010			11/17/2010)		12/2/2010			12/16/2010)
ID	DTW (ft)	DO (%)	PID (ppm)	DTW (ft)	DO (%)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)	DTW (ft)	DO (mg/L)	PID (ppm)
MP-2-1	29.95	60.5	0	29.92	90.3	0.1	29.86	5.95	0	30.09	6.67	0	30.12	11.77	0.1	30.36	9.77	0.1	30.40	15.14	0
MP-2-2	29.99	34.2	0	30.97	20.8	0.1	30.91	2.02	0.3	21.15	2.18	0.2	31.22	5.2	0.2	31.44	45.78	0.1	31.47	27.15	0.1
MP-2-3S	31.11	2.9	0.1	31.09	40.4	0	31.02	44.25	0.1	31.28	40.05	0.1	31.32	47.24	0.3	31.54	48.52	0.1	31.60	41.54	0.1
MP-2-3D	31.32	2.4	0.3	31.32	45.9	1.3	31.25	42.24	4.9	31.56	44.65	1	31.53	45.87	2.3	31.75	45.67	0.2	31.77	47.14	0.1
MP-2-4	19.86	1.7	0.4	19.84	13.2	0.3	19.76	1.65	0	19.63	14.6	0.3	20.05	46.29	1.1	20.28	45.37	0.6	20.31	44.41	0.1
MP-2-5	18.07	61.4	0	18.07	25.8	0	17.98	15.48	0.1	18.21	24.5	0	18.26	24.35	0.5	18.50	24.78	0.3	18.54	5.70	0

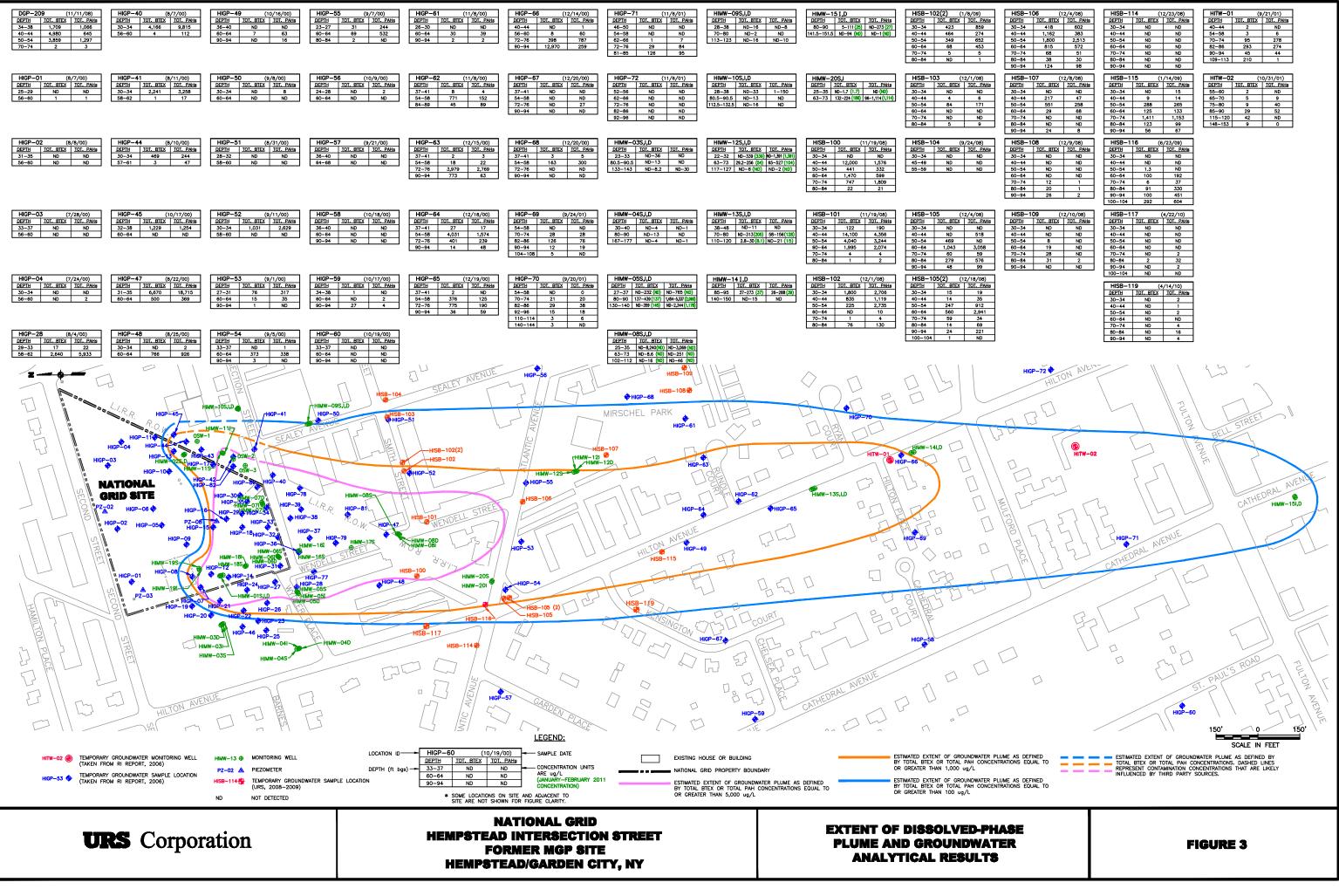
DTW: Depth to water (feet)


DO: Dissolved Oxygen concentration (percent or milligrams per liter)


PID: Photoionization Detector measurement of well headspace (parts per million)

FIGURES

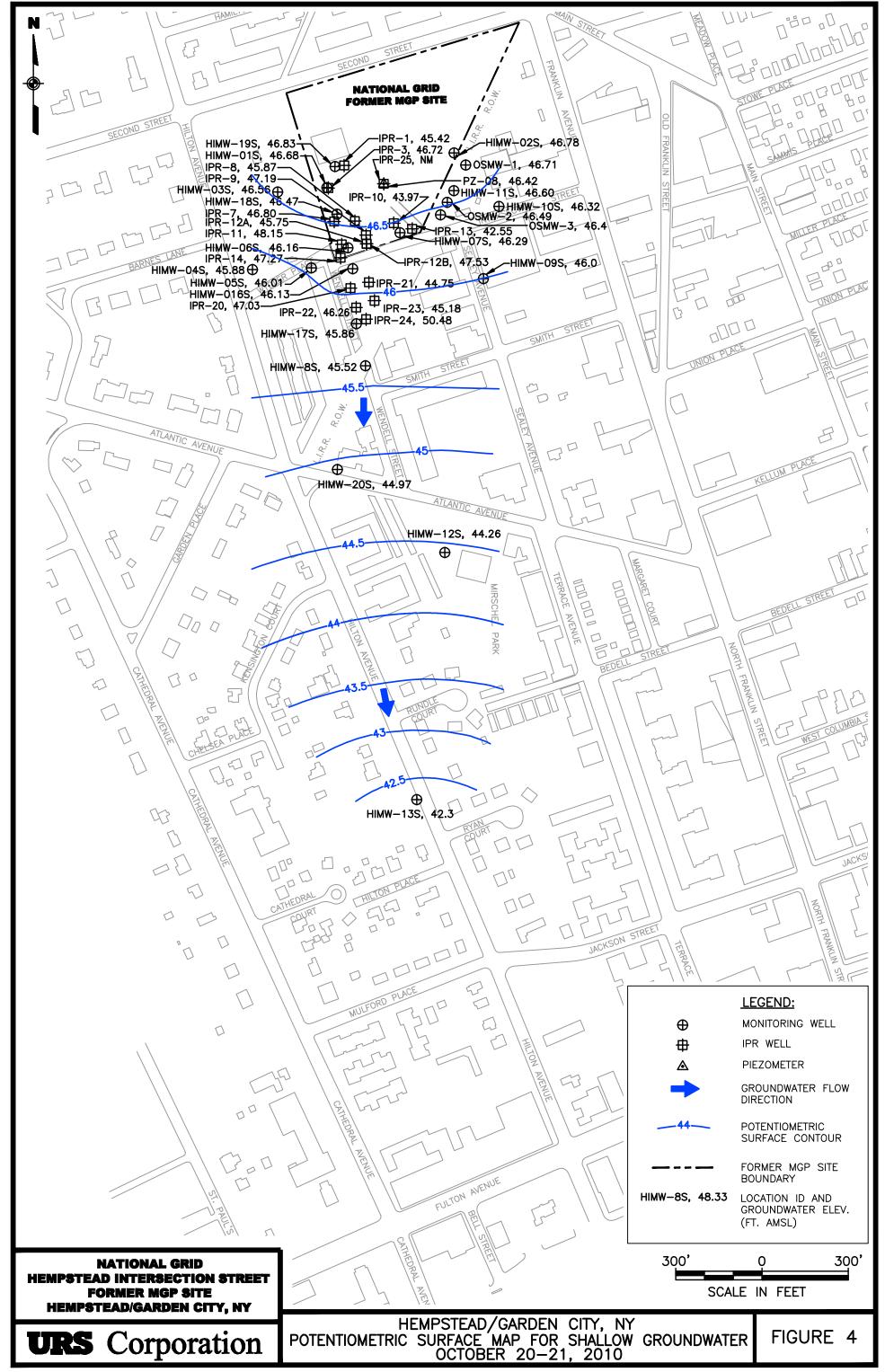
RAL

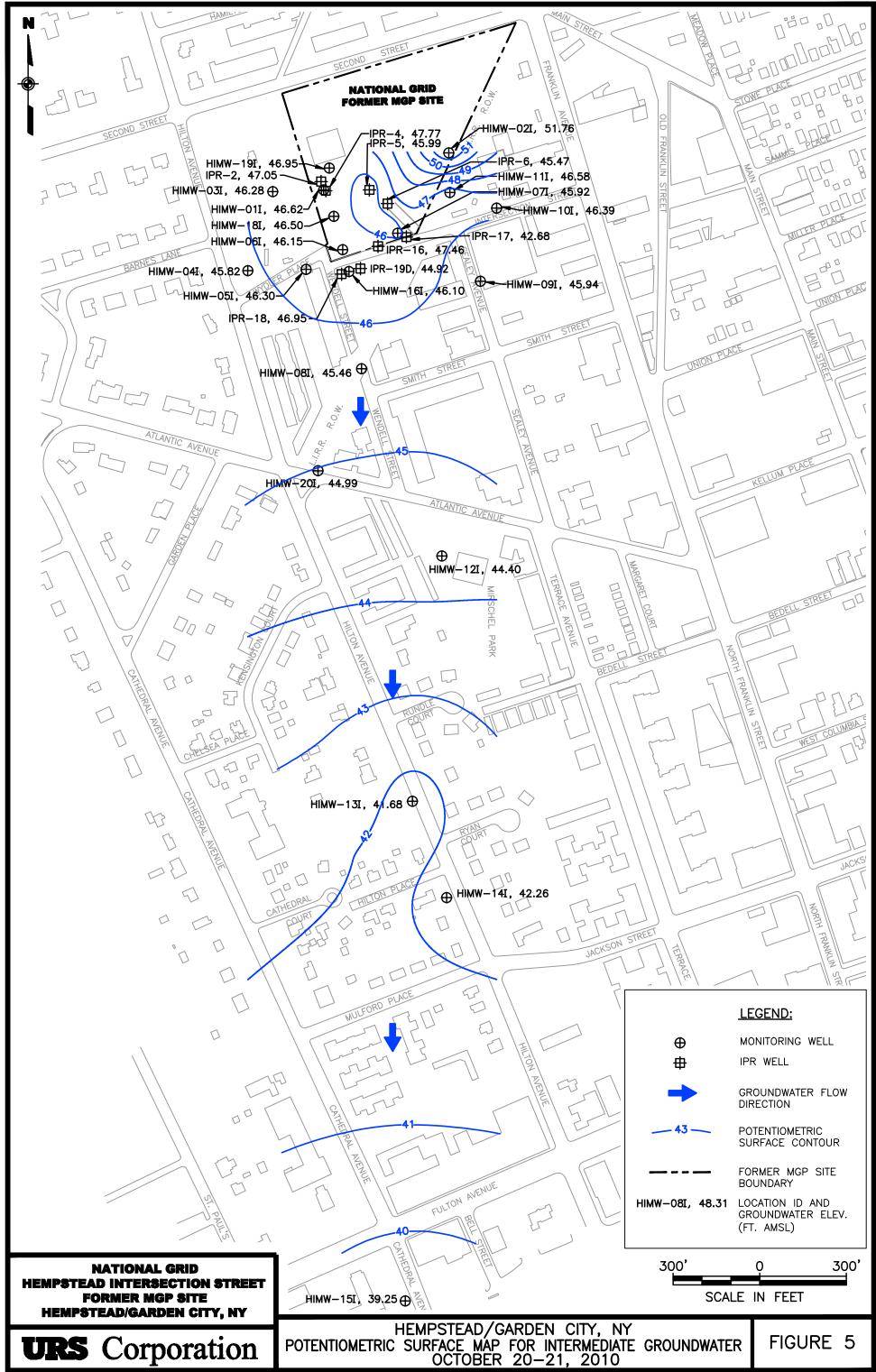


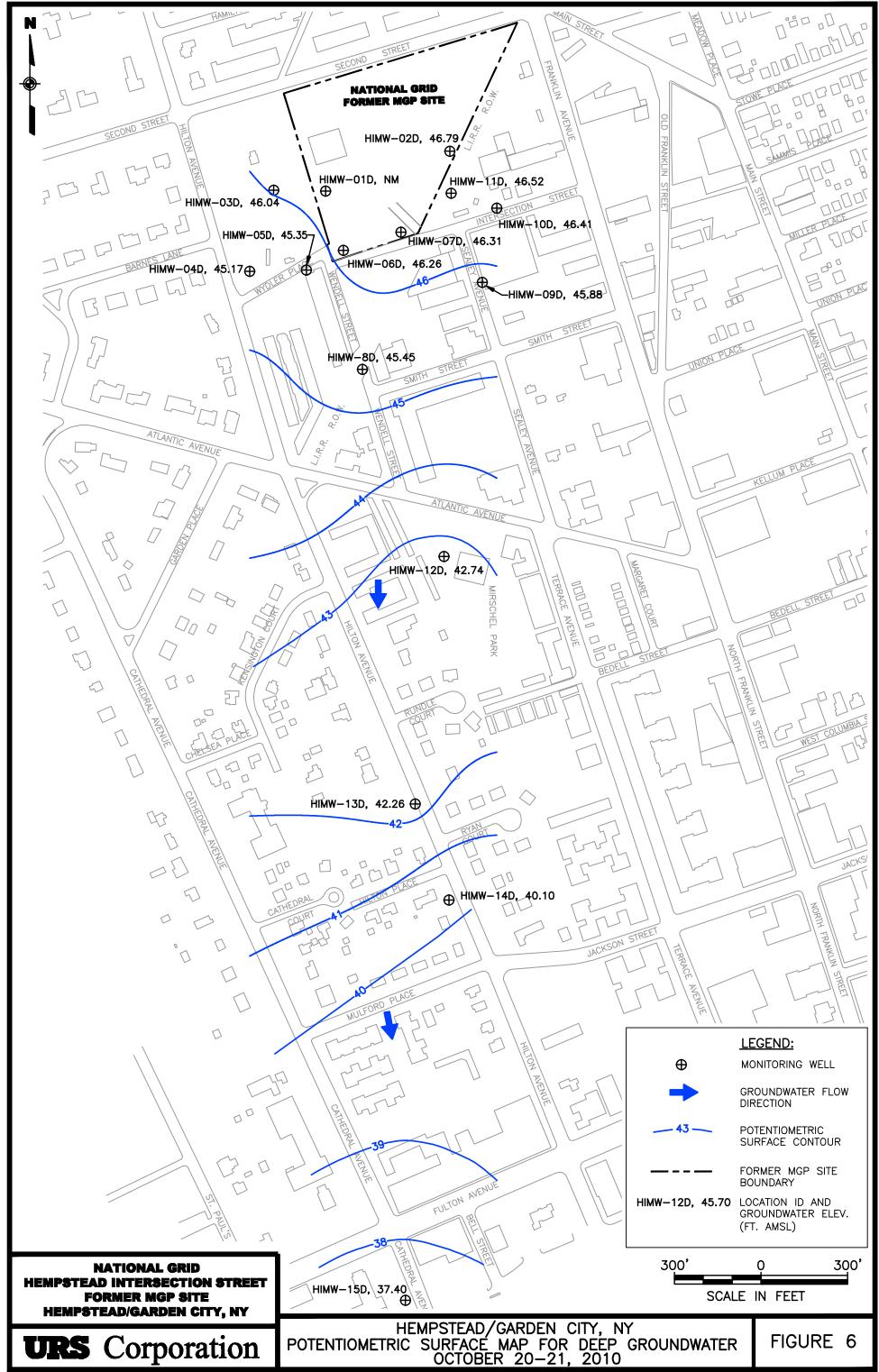
URS

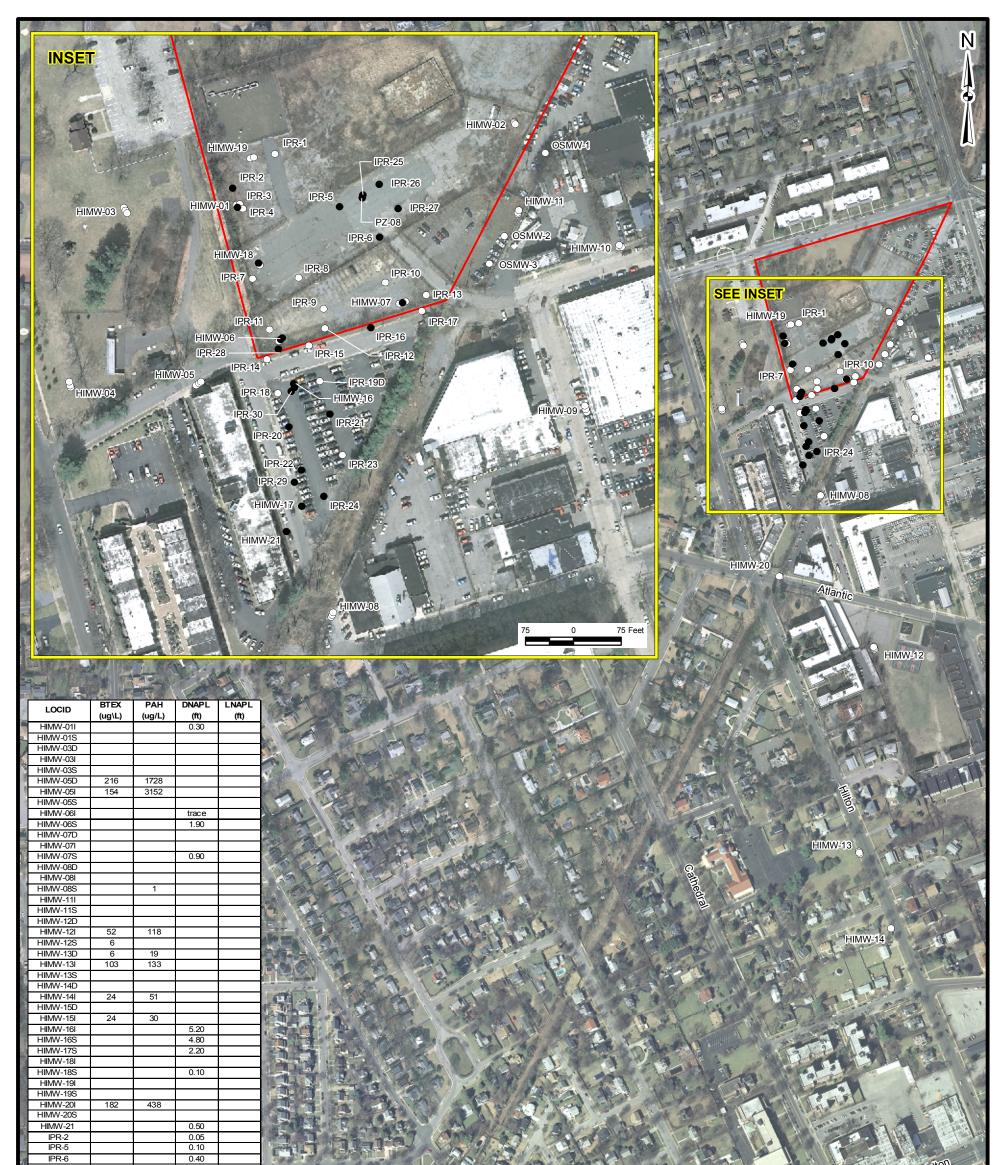
NATIONAL GRID HEMPSTEAD INTERSECTION STREET FORMER MGP SITE HEMPSTEAD/GARDEN CITY, NEW YORK SOIL REMEDIATION AND GROUNDWATER TREATMENT LOCATIONS

FIGURE 2A

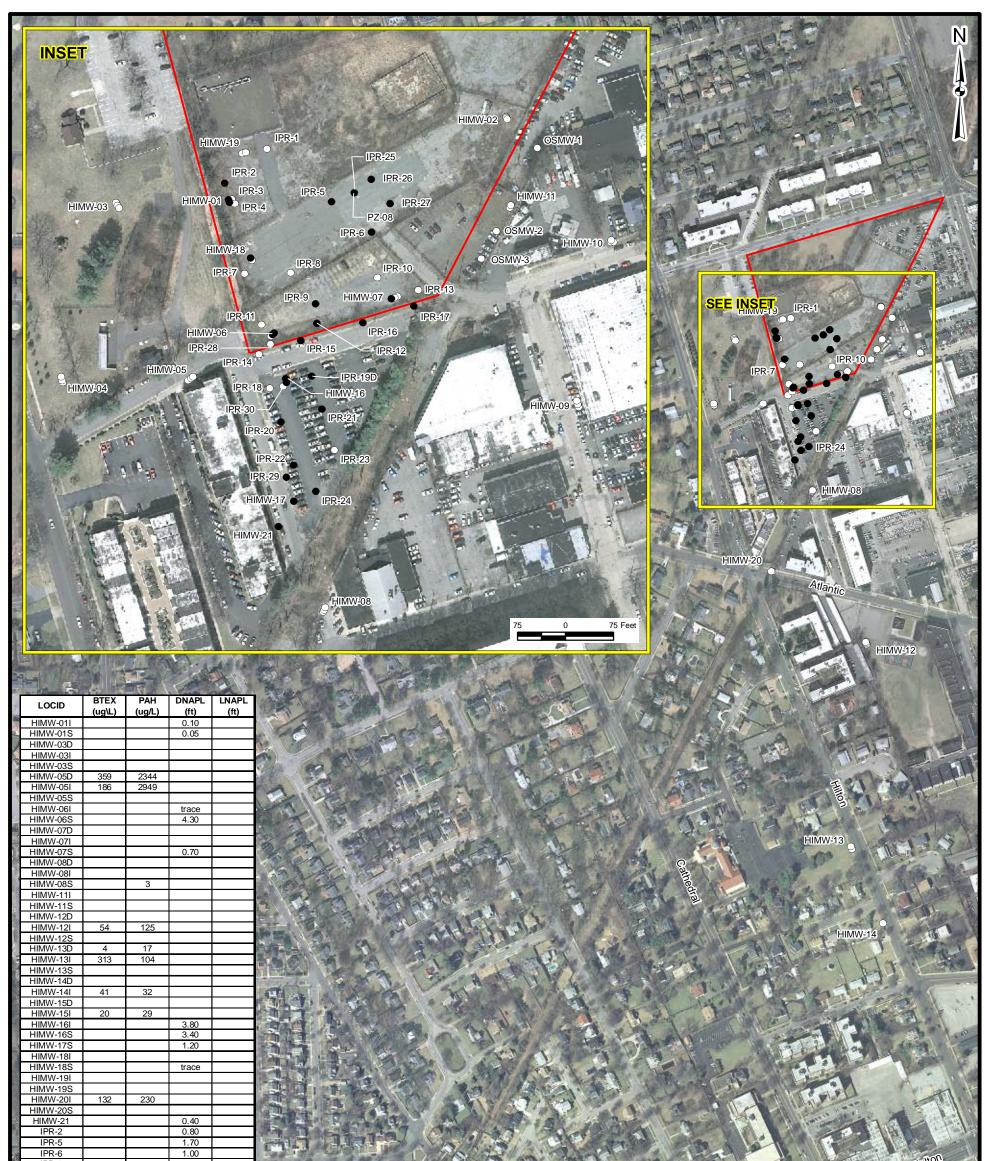

30-34	418	602
40-44	1,162	383
50-54	1,800	2,513
60-64	815	572
70-74	68	51
80-84	38	30
90-94	124	98
HISB-10		2/8/08)
DEPTH	TOT. BTEX	TOT. PAHs
30-34	ND	ND
40-44	217	47
50-54	551	258
60-64	29	68
70-74	ND	ND
80-84	ND	ND
90-94	24	8
HISB-10		2/9/08)
DEPTH	TOT. BTEX	TOT. PAHs
<u>DEPTH</u> 30-34		
<u>DEPTH</u> 30-34 40-44	TOT. BTEX	TOT. PAHs
<u>DEPTH</u> 30-34	TOT. BTEX ND	TOT. PAHs ND
DEPTH 30-34 40-44 50-54 60-64	TOT. BTEX ND ND ND ND	TOT. PAHs ND ND ND ND
<u>DEPTH</u> 30-34 40-44 50-54	TOT. BTEX ND ND ND	TOT. PAHs ND ND ND
DEPTH 30-34 40-44 50-54 60-64	TOT. BTEX ND ND ND ND	ND ND ND ND ND 1 1
DEPTH 30-34 40-44 50-54 60-64 70-74	TOT. BTEX ND ND ND ND 12	TOT. PAHs ND ND ND ND ND 1
DEPTH 30-34 40-44 50-54 60-64 70-74 80-84	TOT. BIEX ND ND ND 12 20	ND ND ND ND ND 1 1
DEPTH 30-34 40-44 50-54 60-64 70-74 80-84 90-94 HISB-10	IOT. BTEX ND ND ND 12 20 26	TOT. PAHs ND ND ND 1 1 2 2/10/08)
DEPTH 30-34 40-44 50-54 60-64 70-74 80-84 90-94 HISB-10 DEPTH	TOT. BTEX ND ND ND 12 20 26 09 10T. BTEX	TOTPAHs ND ND ND 1 2 2/10/08)
DEPTH 30-34 40-44 50-54 60-64 70-74 80-84 90-94 HISB-10	IOT. BTEX ND ND ND 12 20 26	TOT. PAHs ND ND ND 1 1 2 2/10/08)

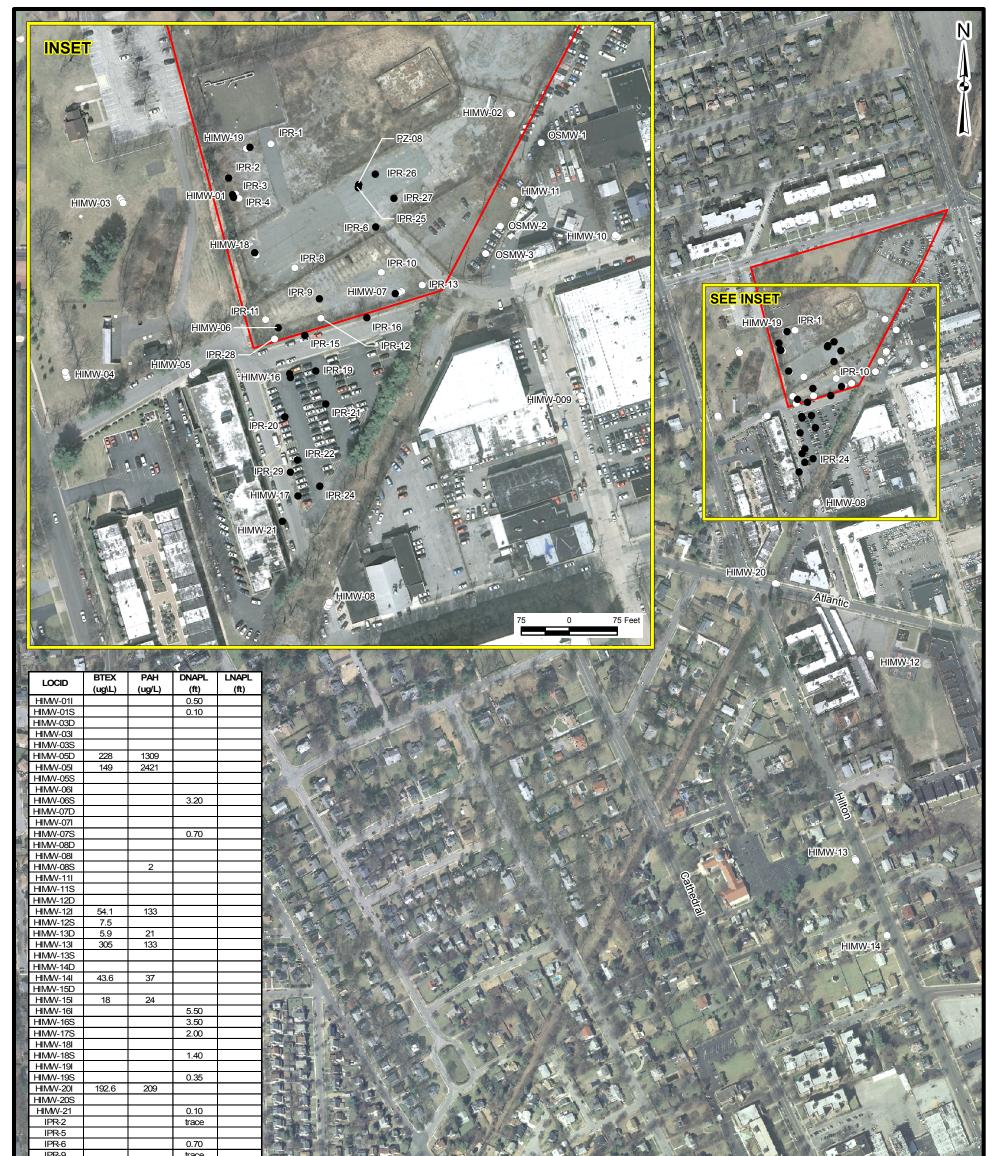

HISB-1	16 (6	(6/23/09)						
DEPTH	TOT. BTEX	TOT. PAHs						
30-34	ND	ND						
40-44	ND	ND						
50-54	1.3	ND						
60-64	100	192						
70-74	6	37						
80-84	91	330						
90-94	100	451						
100-104	292	604						
HISB-1	17 ((4/22/10)						
DEPTH	TOT. BTEX	TOT. PAHs						
30-34	ND	ND						
40-44	ND	ND						
50-54	ND	ND						
60-64	ND	ND						
70-74	ND	2						
80-84	2	32						
90-94	ND	2						
100-104	ND	ND						
HISB-1	HISB-119 (4/14/10)							


HITW-0	I (9							
DEPTH	TOT. BTEX	TOT. PAHs						
40-44	2	ND						
54-58	3	6						
70-74	95	278						
82-86	293	274						
90-94	45	44						
109-113	210	1						


HITW-02	2 (1	(10/31/01)					
DEPTH	TOT. BTEX	TOT. PAHs					
55-60	2	ND					
65-70	5	9					
75-80	9	40					
85-90	29	52					
115-120	42	ND					
148-153	9	0					

J:\11175065.00000\CAD\DRAFT\TASK2\HEMPSTEAD\SITE-WIDE REMEDY\GROUNDWATER TREATMENT\OCTOBER 2010\FIGURE 4.dwg 1/11/11 - 4 RAL





IPR-9 IPR-12A IPR-15 IPR-16 IPR-17 IPR-19D IPR-20 IPR-21 IPR-22 IPR-22 IPR-24 IPR-25 IPR-26 IPR-29 IPR-30 PZ-08	0.40 0.40 0.90 0.90 0.90 0.60 0.60 0.60 0.50 0.60 0.50 0.60 0.50 0.80 0.80 0.80				HIMW-15	Fullon
 Legend Monitoring Well - Product Detected Monitoring Well - Product Not Detected Former MGP Site Boundary 		Product Detected Product Not Detected	Notes: BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes PAH - Polynuclear Aromatic Hydrocarbons DNAPL - Dense Non-Aqueous Phase Liquid LNAPL - Light Non-Aqueous Phase Liquid ug/L - Micrograms per Liter ft - Feet of Product Thickness Product thickness for all wells measured 10/11/10 BTEX/PAH sampling occurred on 10/21/10 - 10/28/10	400	0	400 Feet
URS TOTAL D		TOTAL	HEMPSTEAD/GARDEN CITY, NY DISSOLVED-PHASE BTEX/PAH CONCENTRAT AND FREE PRODUCT THICKNESS FOURTH QUARTER 2010	IONS	FIG	URE 7

IPR-9 IPR-12A IPR-15 IPR-16 IPR-17 IPR-20 IPR-21 IPR-22 IPR-22 IPR-22 IPR-22 IPR-24 IPR-25 IPR-26 IPR-27 IPR-28 IPR-29 IPR-30 PZ-08	1100 trace 1110 0.05 0.20 trace 1110 0.34 1.10 0.34 1.10 0.34 0.30 0.30 0.90 0.95				HIMW-15	Fulton
Legend Monitoring Well - Product Detected Monitoring Well - Product Not Detected Former MGP Site Boundary		oduct Detected oduct Not Detected	Notes: BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes PAH - Polynuclear Aromatic Hydrocarbons DNAPL - Dense Non-Aqueous Phase Liquid LNAPL - Light Non-Aqueous Phase Liquid ug/L - Micrograms per Liter ft - Feet of Product Thickness Product thickness for all wells measured 7/21/10 - 7/22/10 BTEX/PAH sampling occurred on 7/22/10 - 7/29/10	400	0	400 Feet
URS TOTAL D		TOTAL	HEMPSTEAD/GARDEN CITY, NY DISSOLVED-PHASE BTEX/PAH CONCENTRATIO AND FREE PRODUCT THICKNESS THIRD QUARTER 2010	NS	FIG	URE 8

IPR-190 trace IPR-190 trace IPR-20 trace IPR-21 0.10 IPR-25 1.30 IPR-25 1.30 IPR-26 0.10 IPR-27 trace IPR-28 0.10 IPR-29 trace IPR-30 1.10 Version Notes: BTEX - Benzene, Toluene, Ethylbenzene, and Xylenes PAH - Polynuclear Aromatic Hydrocarbons DNAPL - Dense Non-Aqueous Phase Liquid UQL - Micrograms per Liter t - Feet of Product Thickness Product thickness for all wells measured on 4/26/2010 BTEX/PAH sampling occurred on 4/13/2010 - 4/20/2010	E 9
IPR-20 trace IPR-21 0.10 IPR-22 0.55 IPR-24 trace IPR-25 1.30 IPR-26 0.10 IPR-27 trace IPR-28	400 Feet
IPR-15 trace IPR-16 trace IPR-17	FUICOU

FIGURE 11A Well HIMW-01S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

FIGURE 11B Well HIMW-01I NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

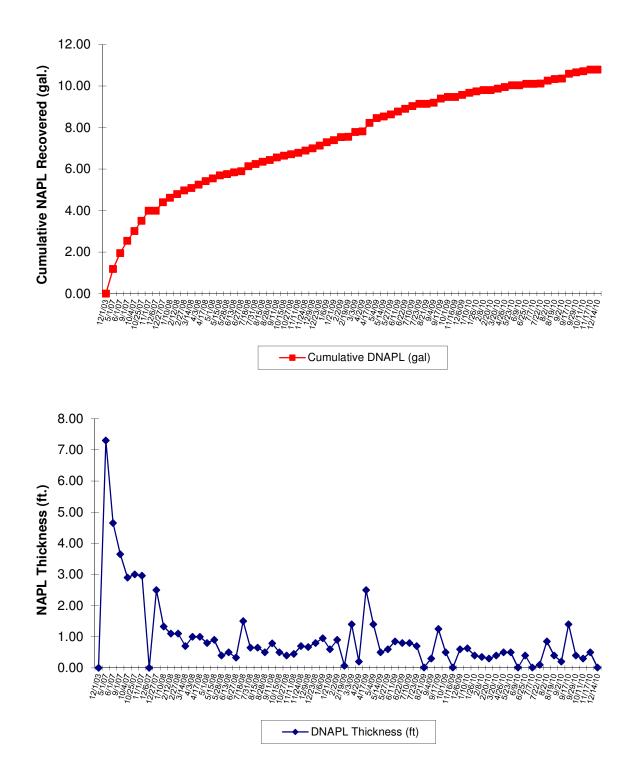


FIGURE 11C Well HIMW-06S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

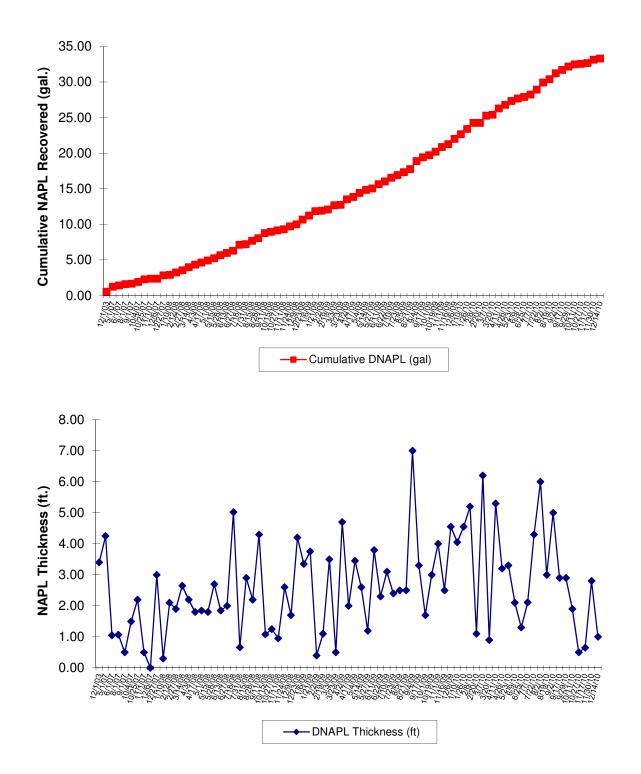


FIGURE 11D Well HIMW-06I NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

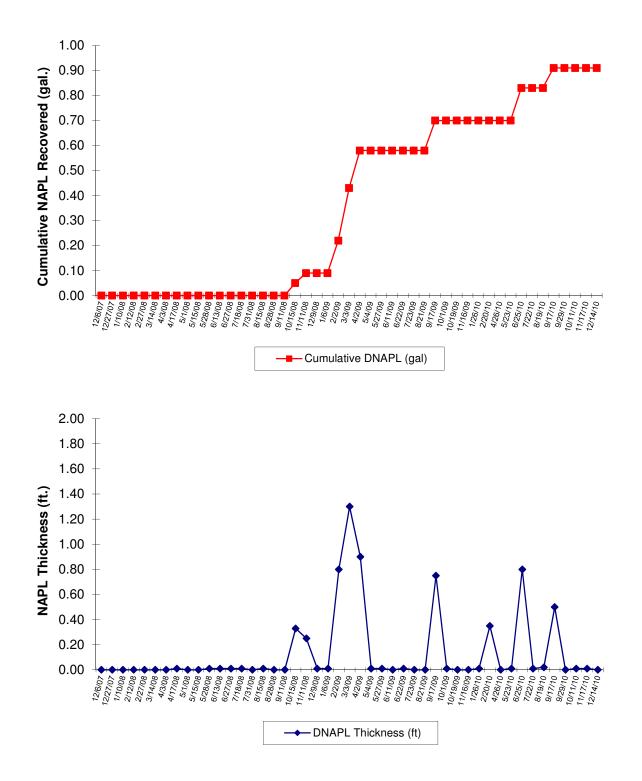


FIGURE 11E Well HIMW-07S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

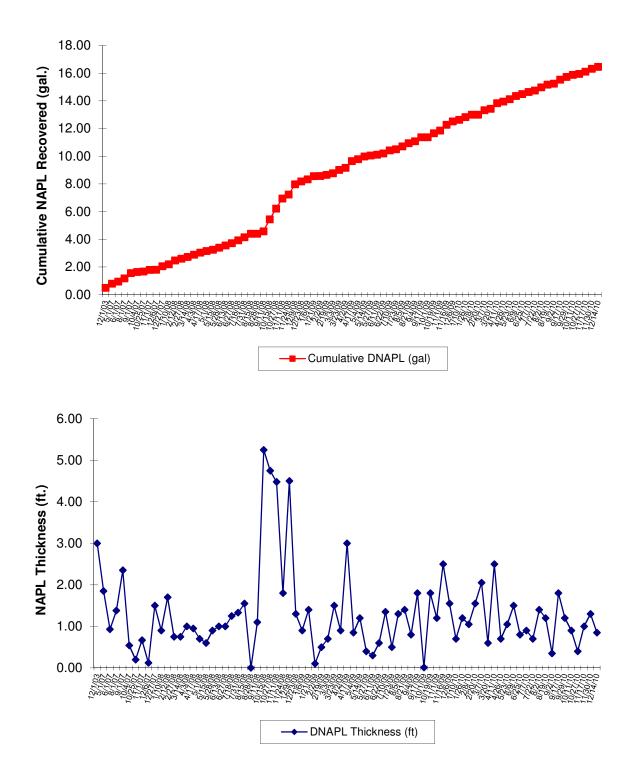


FIGURE 11F Well HIMW-11S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

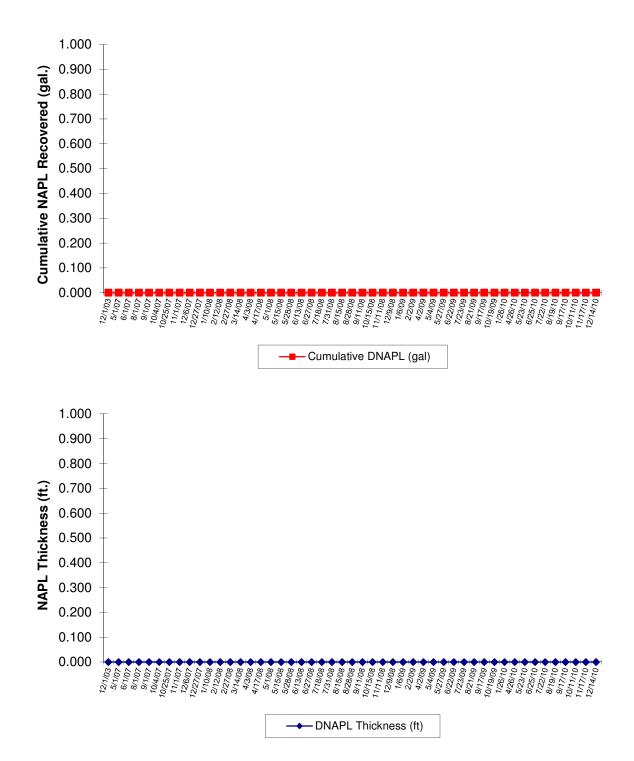


FIGURE 11G Well HIMW-11I NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

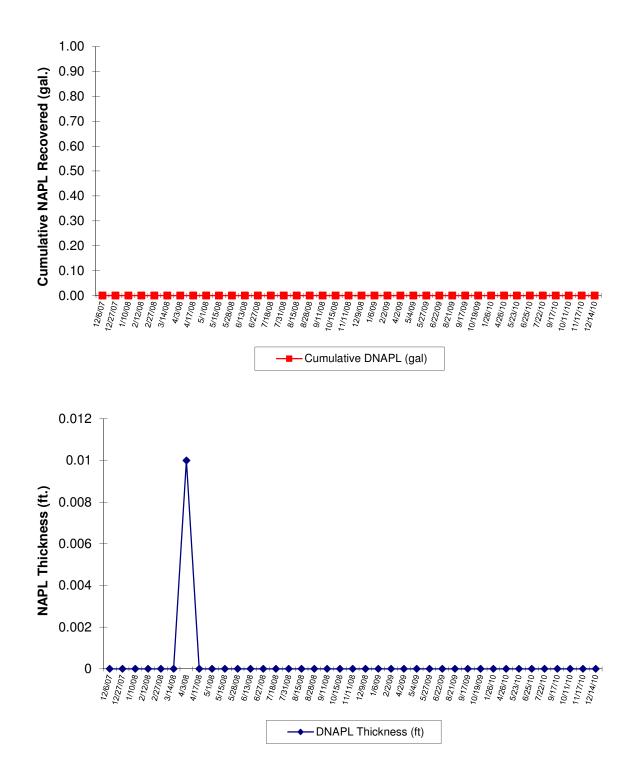


FIGURE 11H Well HIMW-16S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

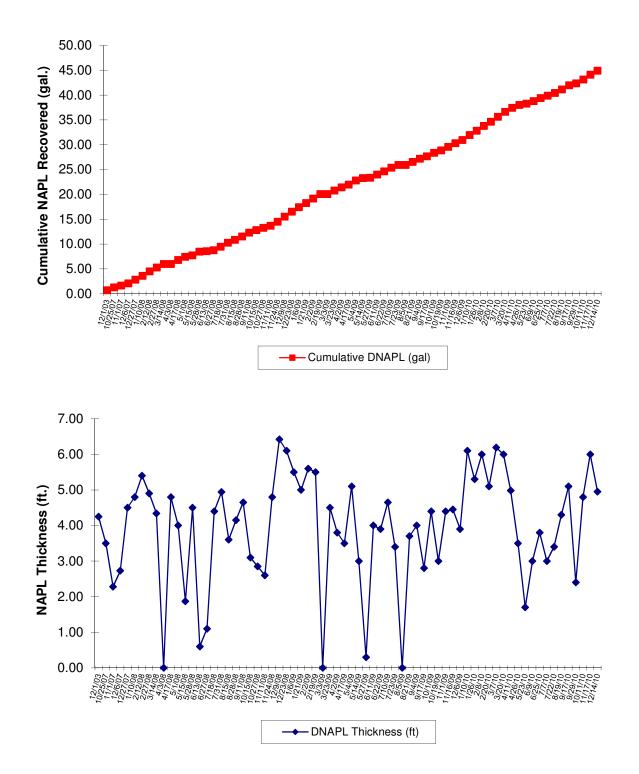


FIGURE 11I Well HIMW-16I NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

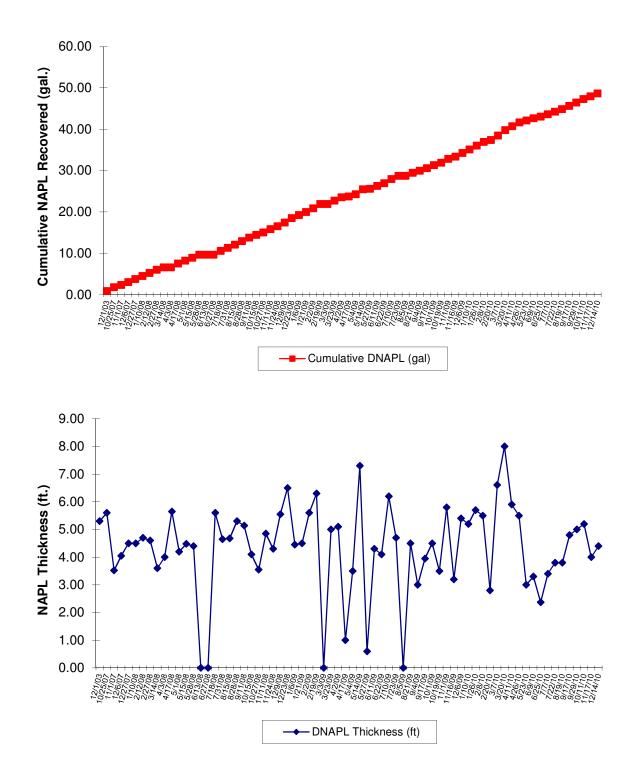


FIGURE 11J Well HIMW-17S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

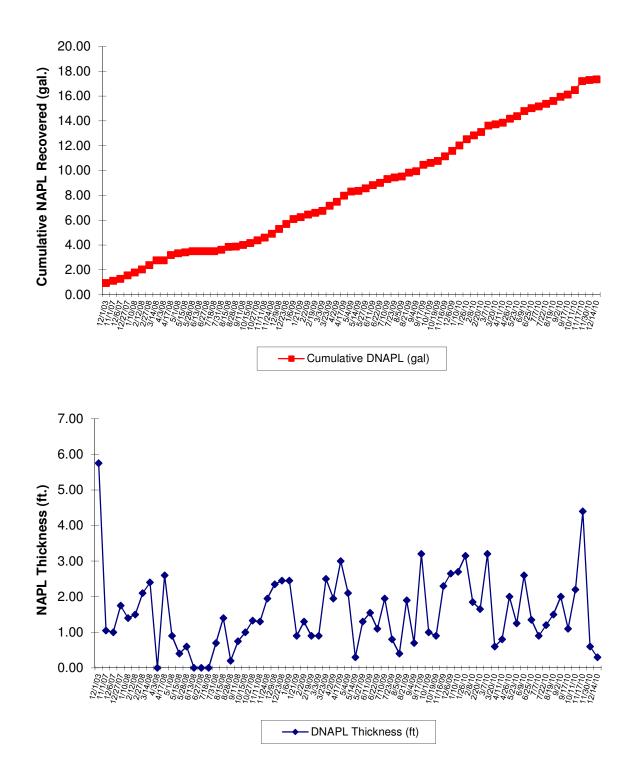


FIGURE 11K Well HIMW-18S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

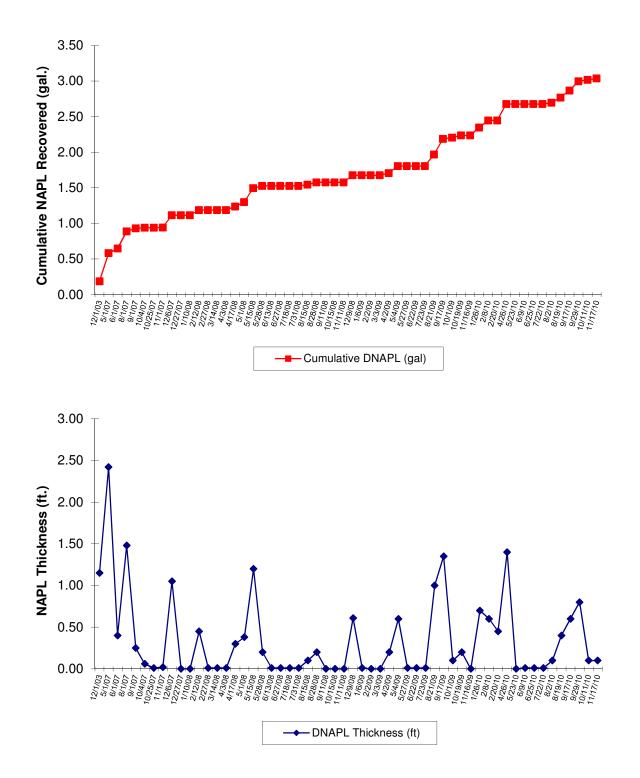


FIGURE 11L Well HIMW-18I NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

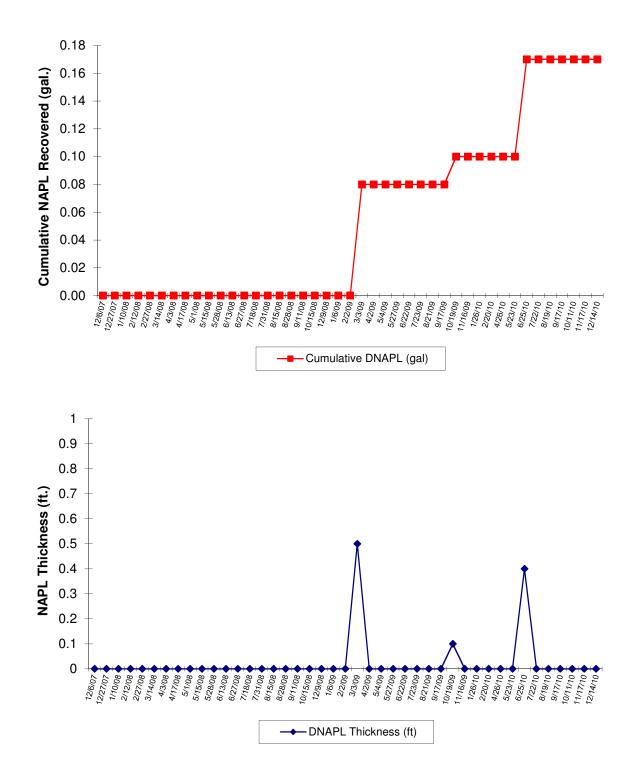


FIGURE 11M Well HIMW-19S NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

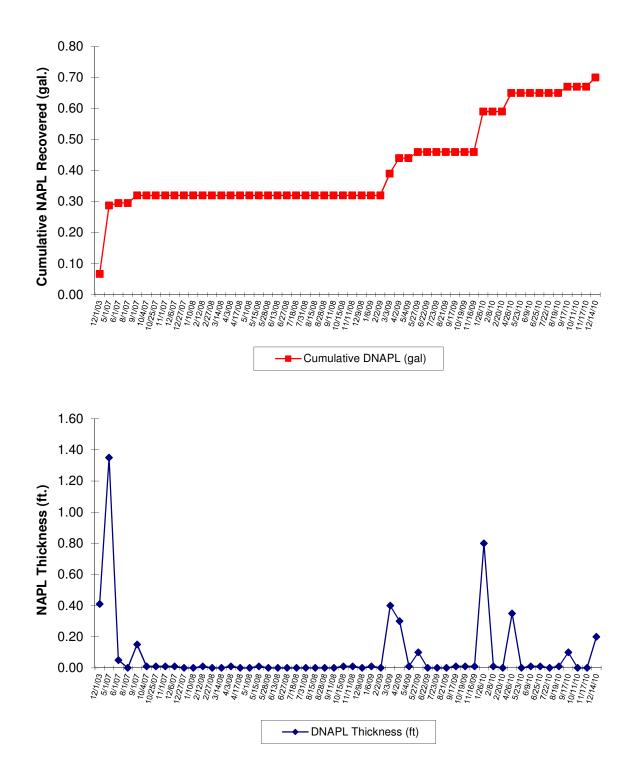


FIGURE 11N Well HIMW-19I NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

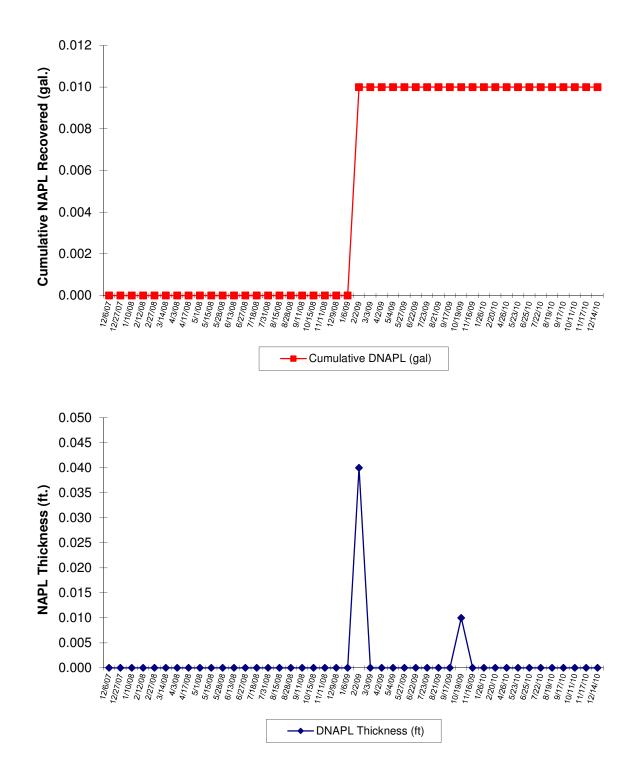


FIGURE 110 Well HIMW-21 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

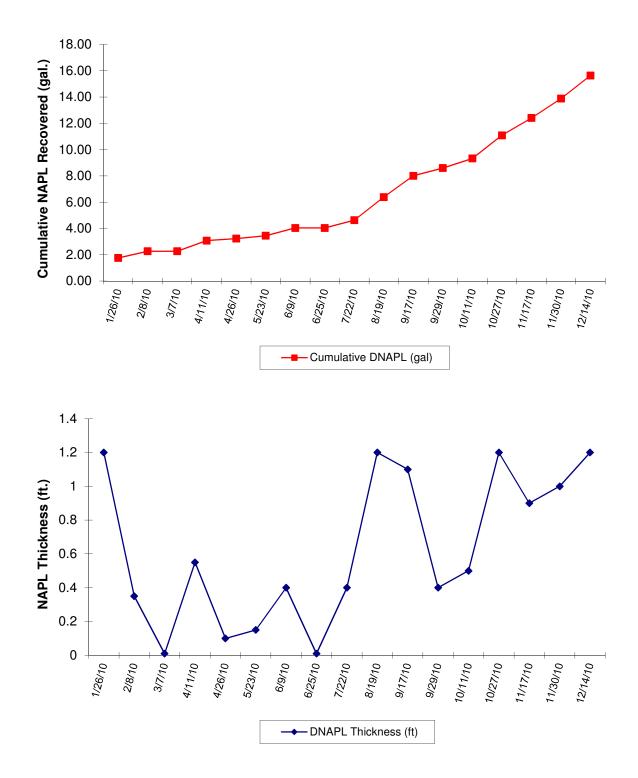


FIGURE 11P Well PZ-08 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

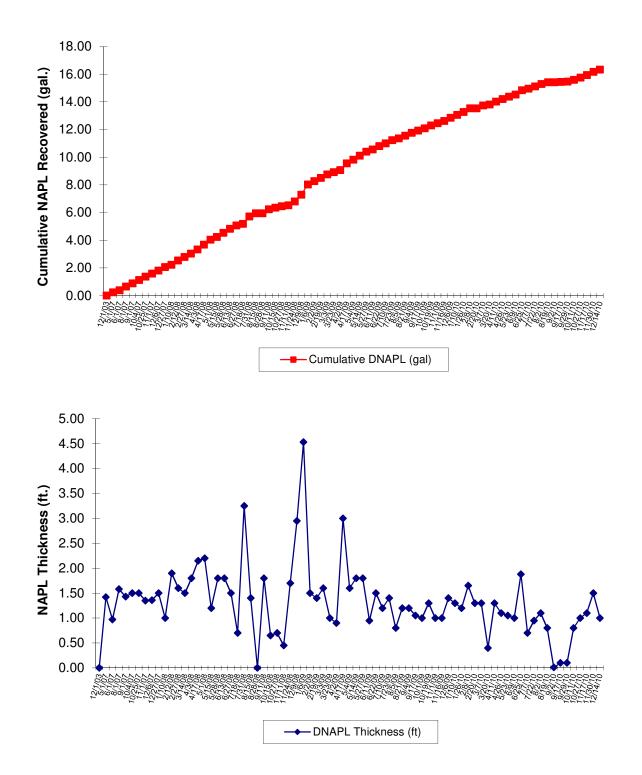


FIGURE 11Q Well IPR-02 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

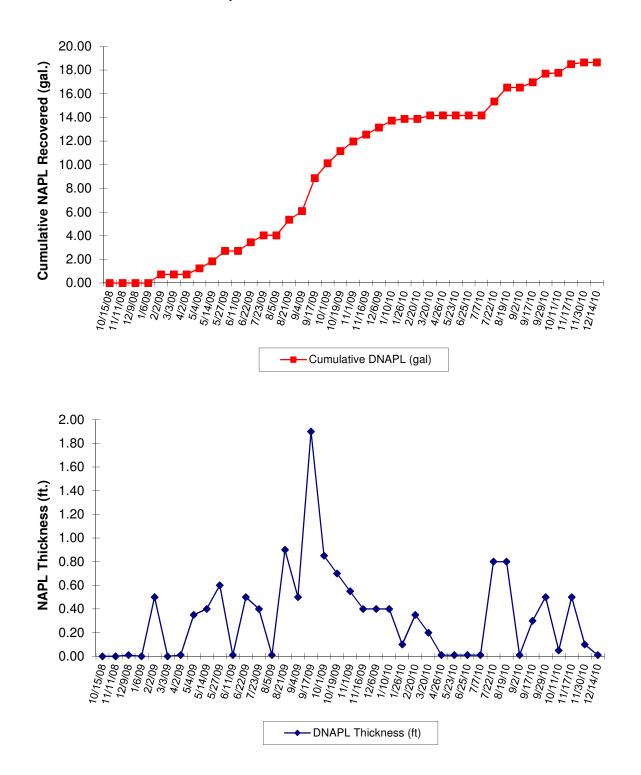


FIGURE 11R Well IPR-05 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

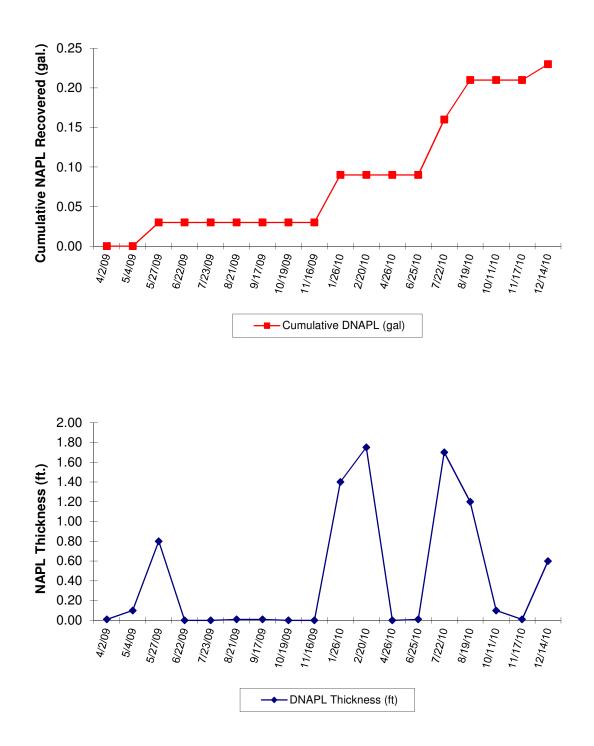


FIGURE 11S Well IPR-06 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

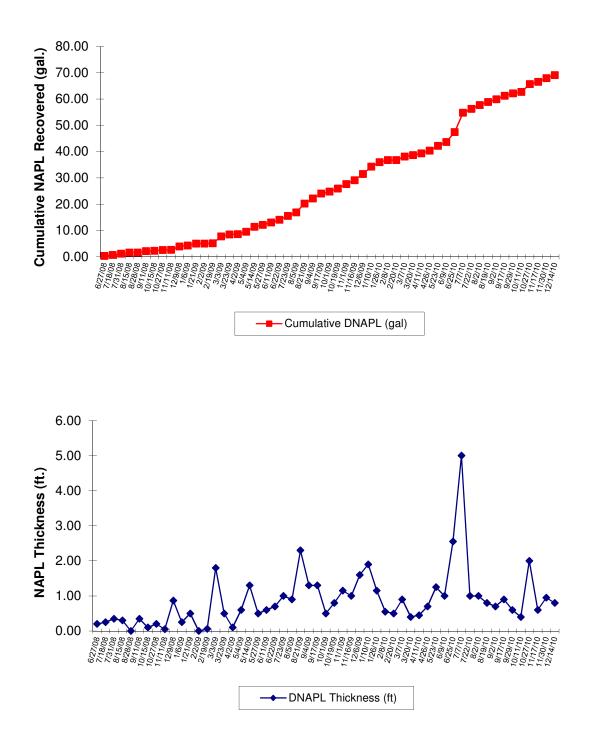


FIGURE 11T Well IPR-09 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

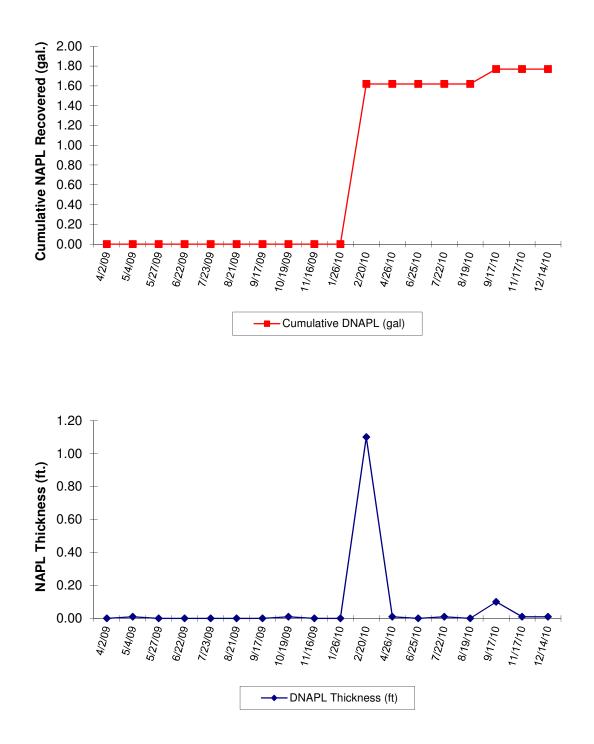


FIGURE 11U Well IPR-12A NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

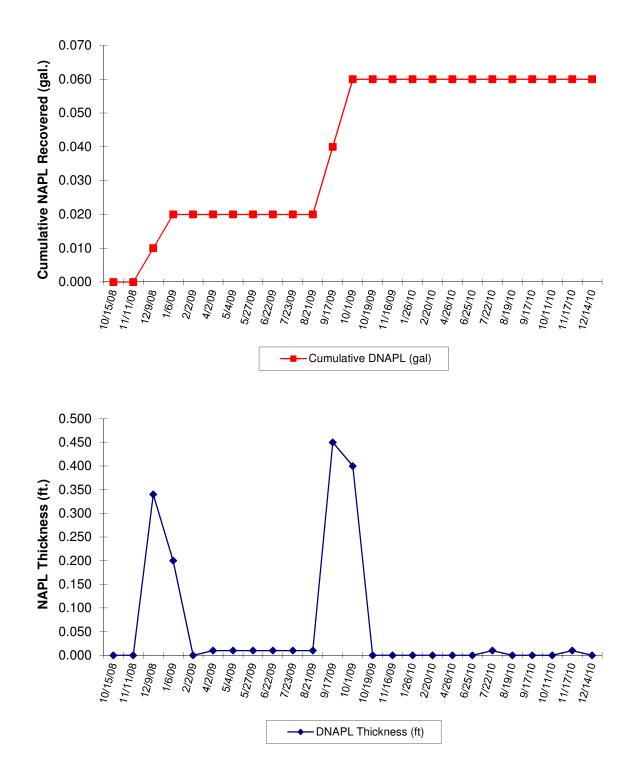


FIGURE 11V Well IPR-15 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

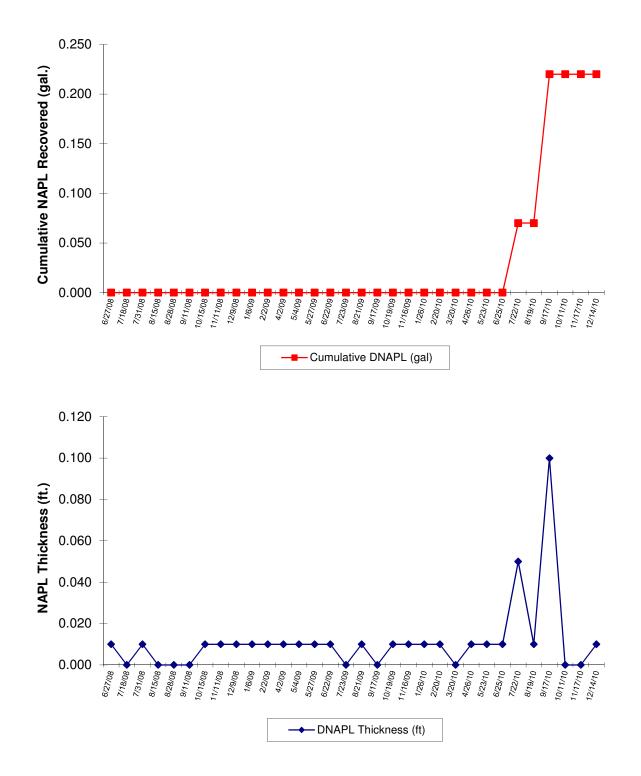


FIGURE 11W Well IPR-16 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

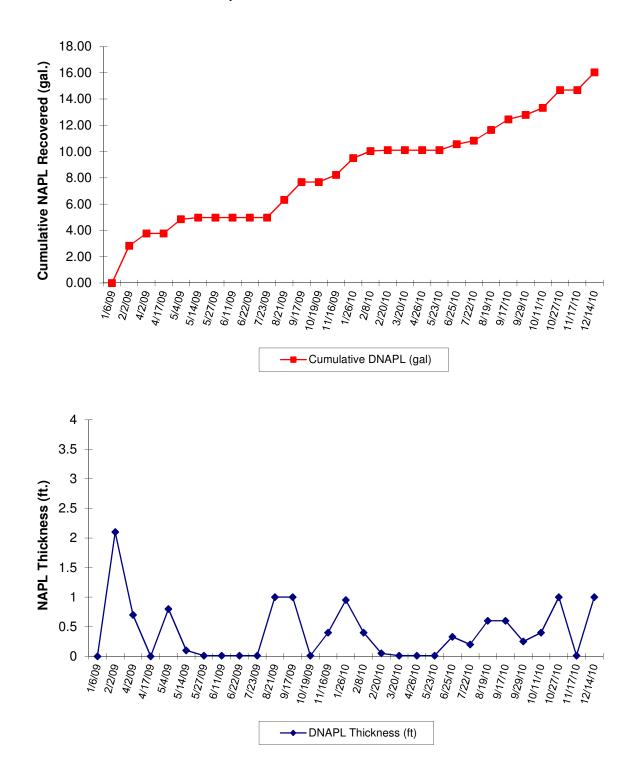
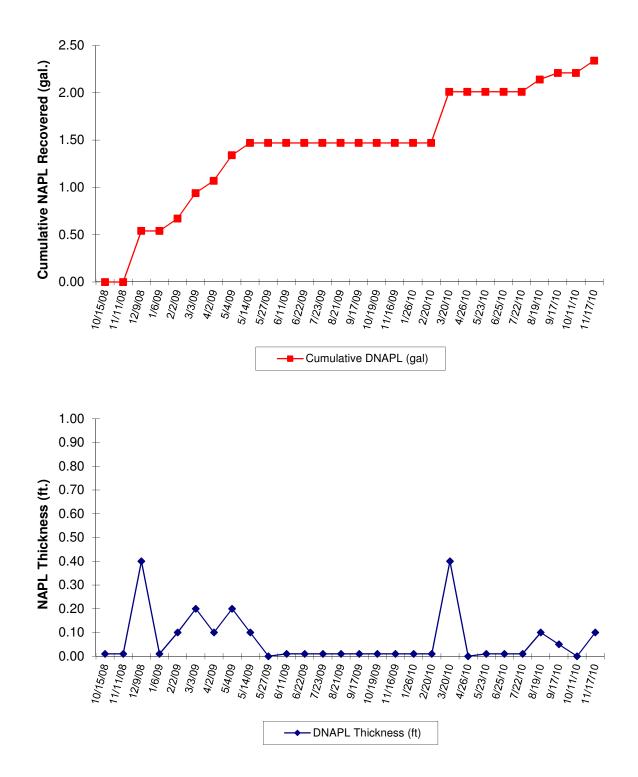



FIGURE 11X Well IPR-17 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

0.35 Cumulative NAPL Recovered (gal.) 0.30 0.25 0.20 0.15 0.10 0.05 0.00 1/26/10 1/23/09 8/21/09 9/17/09 10/19/09 11/16/09 2/20/10 3/20/10 4/26/10 5/23/10 6/25/10 11/17/10 12/14/10 8/19/10 9/17/10 7/22/10 10/11/10 Cumulative DNAPL (gal) 1.00 0.90 0.80 NAPL Thickness (ft.) 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 8/21/09 ×1/23/09 8/17/09 10/19/09 11/16/09 6/25/10 7/22/10 11/17/10 1/26/10 2/20/10 1 3/20/10 4/26/10 2 5/23/10 1 8/19/10 8/17/10 10/11/10 12/14/10 - DNAPL Thickness (ft)

FIGURE 11Y Well IPR-18 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

FIGURE 11Z Well IPR-20 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

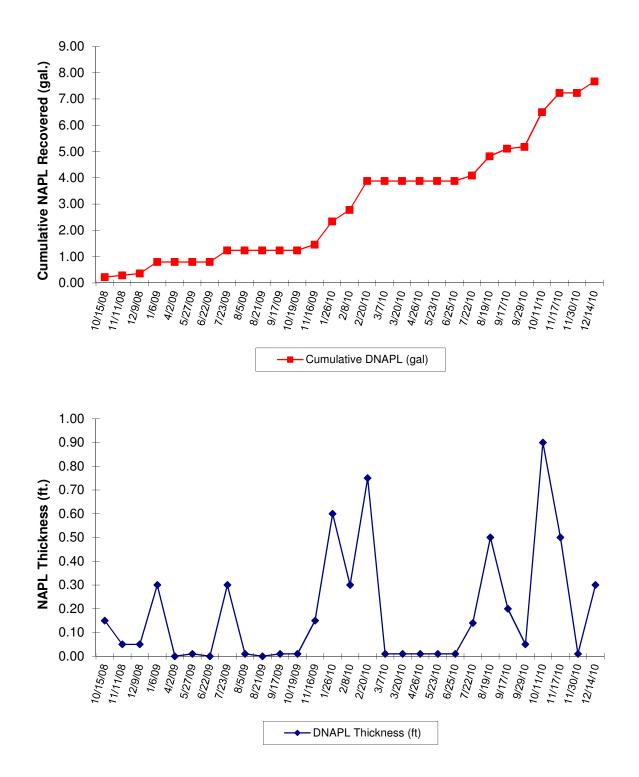


FIGURE 11AA Well IPR-21 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

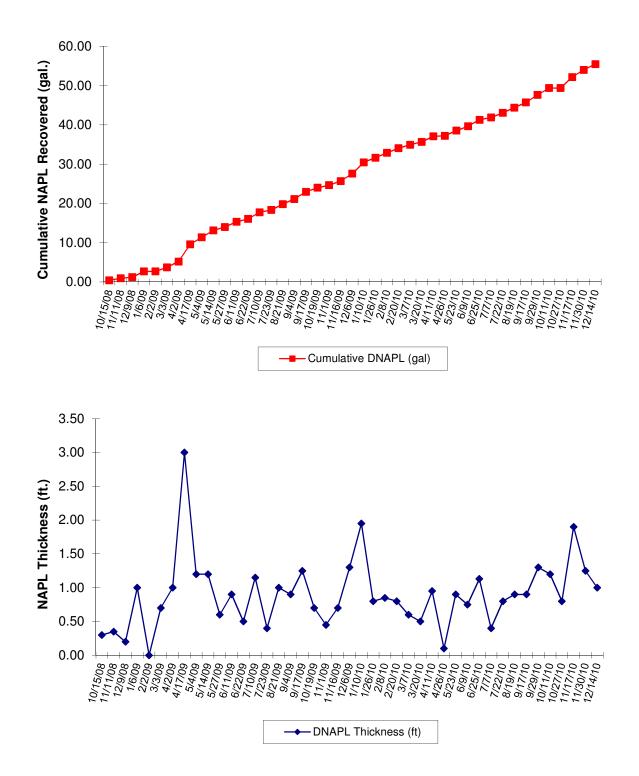


FIGURE 11AB Well IPR-22 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

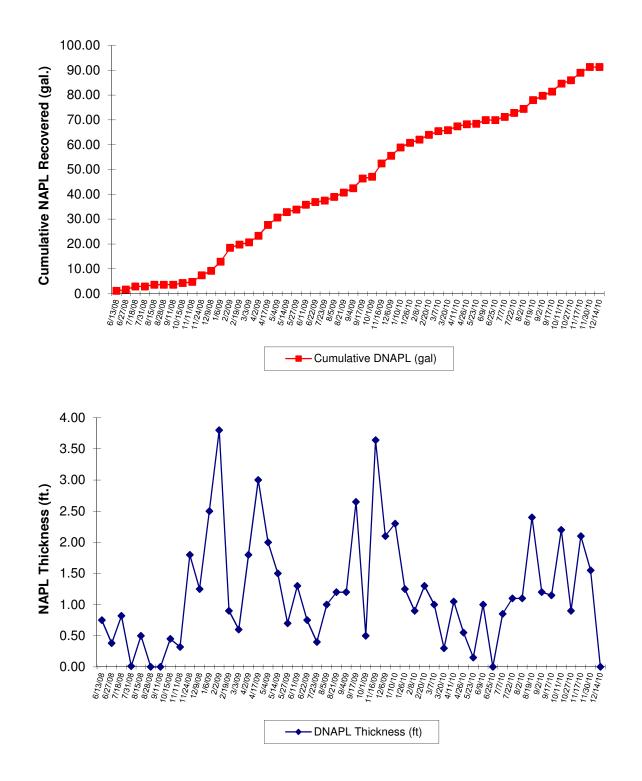


FIGURE 11AC Well IPR- 23 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

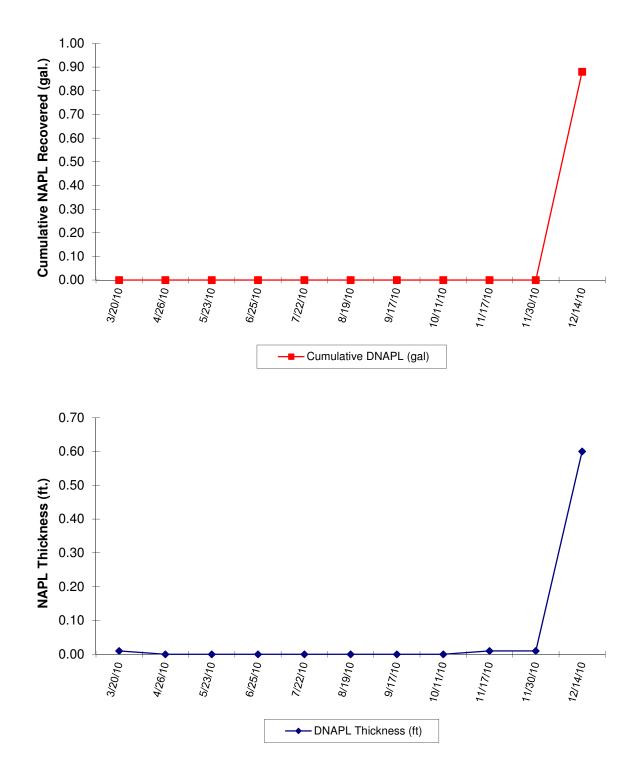


FIGURE 11AD Well IPR-24 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

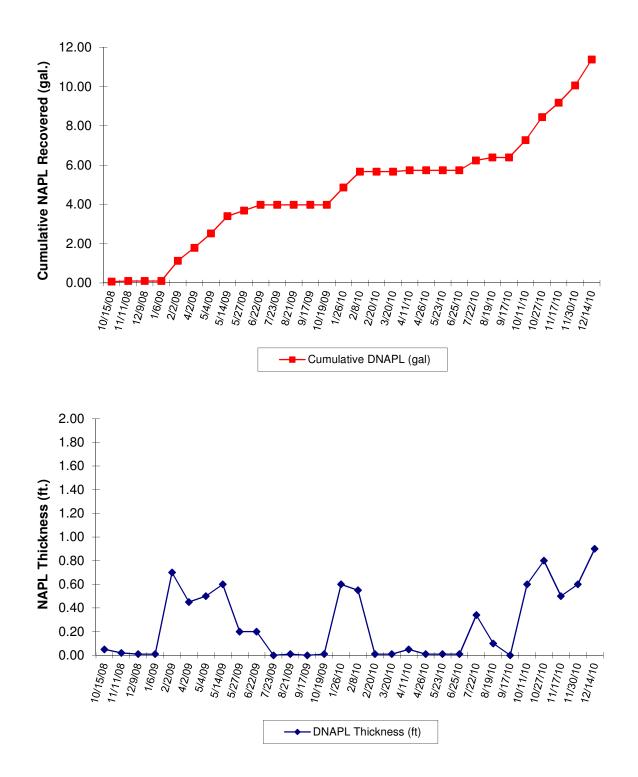


FIGURE 11AE Well IPR-25 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

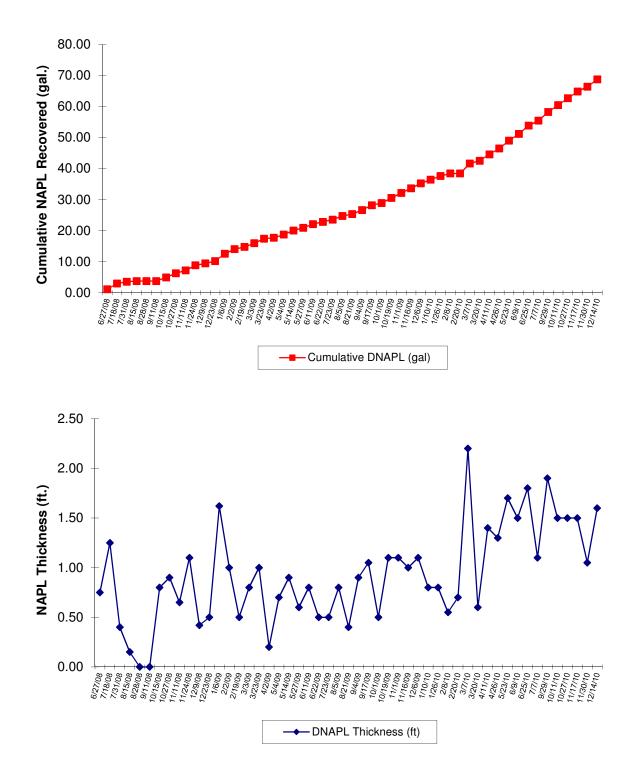


FIGURE 11AF Well IPR-26 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

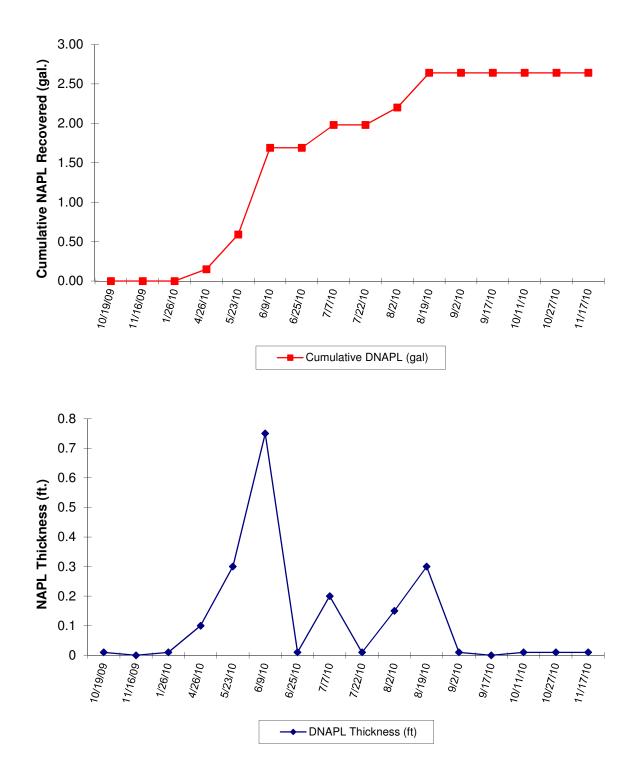


FIGURE 11AG Well IPR-27 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

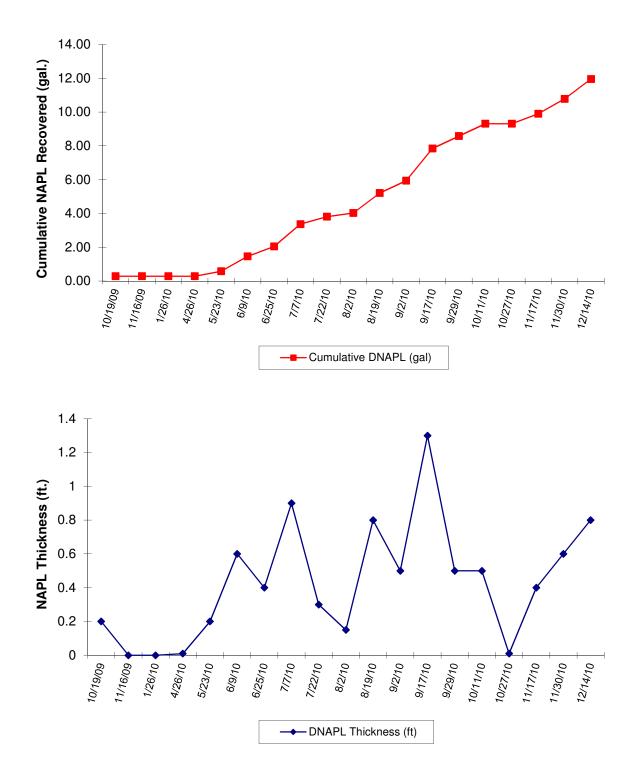


FIGURE 11AH Well IPR-28 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

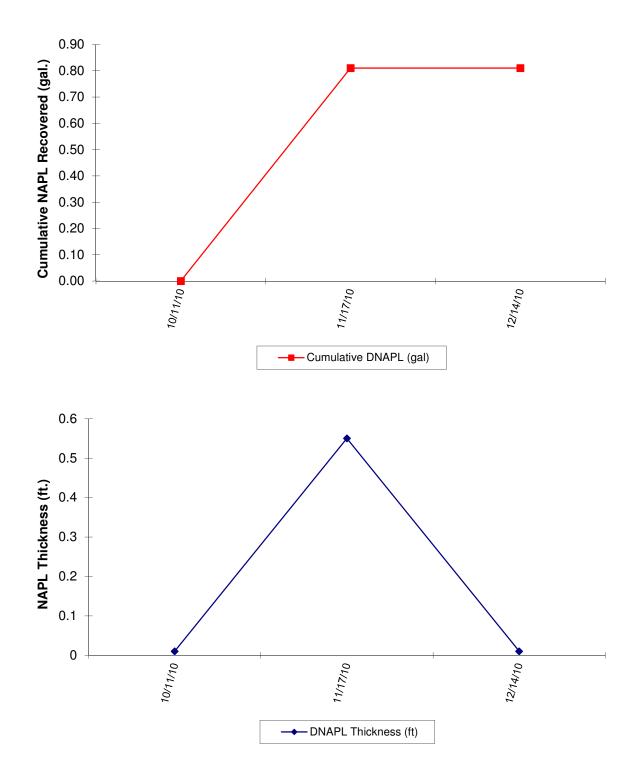


FIGURE 11AI Well IPR-29 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

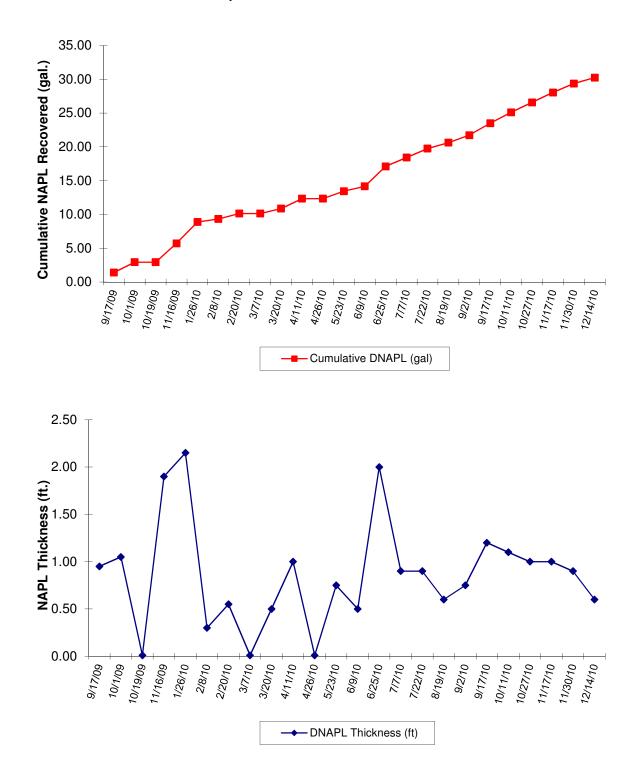
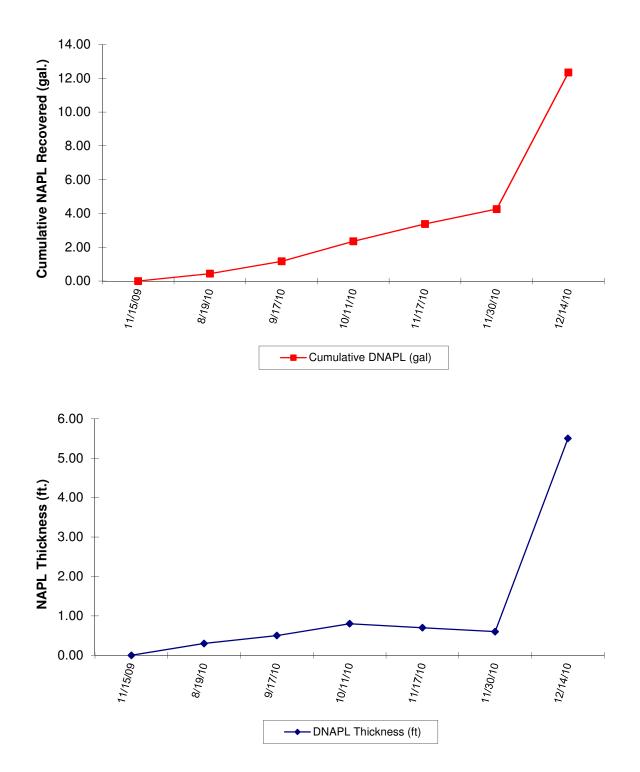



FIGURE 11AJ Well IPR-30 NAPL Thickness and Cumulative Recovery Plot Hempstead Intersection Street Former MGP Site

APPENDIX A

DATA USABILITY SUMMARY REPORT

(Provided in Electronic Format Only)

APPENDIX B

SOIL VAPOR SAMPLING DATA

J:\11175065.00000\WORD\DRAFT\Quarterly&Annual Data Reports\2010 Annual Report\Hempstead_2010_Annual_Data_Report.doc

Table X Analytical Soil Gas Results Hempstead Site Hempstead, New York

		NYSDOH Background			
		Upper Fence Outdoor	HIVP-16	HIVP-17	HIVP-18
	Sample Date:	Air Concentrations	6/11/2010	6/11/2010	6/11/2010
BTEX (ug/m3)				1 0 11	
Benzene		4.8	1.3 U	1.3 U	1.3 U
Toluene		5.1	0.84 J	3.7	2.0
Ethylbenzene		1	1.7 U	1.7 U	1.7 U
Xylene, m,p-		1	3.5 U	3.5 U	1.0 J
Xylene, o-		1.2	1.7 U	1.7 U	1.7 U
Other VOCs (ug/m3)					
Acetaldehyde		NE	3.0 J	3.6 J	3.1 J
Acetone		30	1.6 J	3.8 J	1.9 J
Acrolein (propenal)		NE	2.3 U	2.3 U	2.3 U
Allyl chloride		NE	1.2 U	1.2 U	1.2 U
Benzothiophene		NE	5.5 U	5.5 U	5.5 U
Bromodichloromethane		NE	2.7 U	2.7 U	2.7 U
Bromoform		NE	4.1 U	4.1 U	4.1 U
Bromomethane		0.5	1.6 U	1.6 U	1.6 U
Butadiene, 1,3-		NE	0.88 U	0.88 U	0.88 U
Butane		NE	0.95 U	0.95 U	0.95 U
Butanone,2-		5.3	1.2 U	1.2 U	1.2 U
Carbon disulfide		NE	1.2 U	1.2 U	1.2 U
Carbon tetrachloride		1.2	2.5 U	2.5 U	2.5 U
Chlorobenzene		0.25	1.8 U	1.8 U	1.8 U
Chloroethane		0.4	1.0 U	1.0 U	1.0 U
Chloroform		0.5	2.0 U	2.0 U	2.0 U
Chloromethane		4.3	0.23 J	0.83 U	0.83 U
Chlorotoluene,2-		NE	2.1 U	2.1 U	2.1 U
Cryofluorane		0.5	2.8 U	2.8 U	2.8 U
Cyclohexane		0.9	1.4 U	1.4 U	1.4 U
Decane, n-		4.7	2.3 U	2.3 U	2.3 U
Dibromochloromethane		NE	3.4 U	3.4 U	3.4 U
Dibromoethane,1,2-		0.4	3.1 U	3.1 U	3.1 U
Dichlorobenzene, 1, 2-		0.4	2.4 U	2.4 U	2.4 U
Dichlorobenzene, 1, 3-		0.4	2.4 U	2.4 U	2.4 U
Dichlorobenzene,1,4-		0.5	2.4 U	2.4 U	2.4 U
Dichlorodifluoromethane	}	10	2.8	2.8	2.6
Dichloroethane,1,1-		0.25	1.6 UJ	1.6 UJ	1.6 UJ
Dichloroethane, 1,2-		0.4	1.6 U	1.6 U	1.6 U
Dichloroethene, cis-1,2-		0.4	1.6 U	1.6 U	1.6 U
Dichloroethene, 1,1-		0.4	1.6 U	1.6 U	1.6 U
Dichloropropane, 1,2-		0.4	1.8 U	1.8 U	1.8 U
Dichloropropene, cis-1,3	3	0.4	1.8 U	1.8 U	1.8 U
Dichloropropene, trans-		0.25	1.8 U	1.8 U	1.8 U
Dioxane, 1,4-	· -	NE	1.4 U	1.4 U	1.4 U
Dodecane, n-		4.5	1.2 J	0.79 J	2.8 U
Ethanol		34	1.3 J	1.8 J	1.7 J
Ethylthiophene, 2-		NE	1.8 U	1.8 U	1.8 U
Ethyltoluene, p-		NE	2.0 U	2.0 U	2.0 U
Heptane, n-		2.2	1.6 U	1.6 U	1.6 U
		<u> </u>	1.0.0	1.00	1.0 0

Table X Analytical Soil Gas Results Hempstead Site Hempstead, New York

Hexachlorobutadiene	0.5	4.3 U	4.3 U	4.3 U
Hexane, n-	2	1.4 U	1.4 U	1.4 U
Hexanone,2-	NE	1.6 U	1.6 U	1.6 U
Indan	NE	1.9 U	1.9 U	1.9 U
Indene	NE	0.59 J	0.86 J	1.6 J
Methyl tert-butyl ether	1.9	1.4 U	1.4 U	1.4 U
Methyl-2-pentanone,4-	0.5	1.6 U	1.6 U	1.6 U
Methylene chloride	1.6	1.4 J	1.1 J	1.5 J
Methylnaphthalene,1-	NE	5.8 U	5.8 U	5.8 U
Methylnaphthalene,2-	NE	5.8 U	5.8 U	5.8 U
Methylthiophene, 2-	NE	1.6 U	1.6 U	1.6 U
Methylthiophene, 3-	NE	1.6 U	1.6 U	1.6 U
Naphthalene	NE	0.62 J	0.84 J	1.4 J
Nonane	0.7	2.1 U	2.1 U	2.1 U
Octane, n-	1.5	1.9 U	1.9 U	1.9 U
Pentane	NE	1.2 U	0.60 J	1.2 U
Propanol,2-	NE	2.5 U	2.5 U	2.5 U
Styrene	0.5	1.7 U	1.7 U	1.7 U
t-Butyl alcohol	NE	1.2 U	1.2 U	1.2 U
Tetrachloroethane,1,1,2,2-	0.4	2.7 U	2.7 U	2.7 U
Tetrachloroethene	0.7	3.7	4.4	1.1 J
Tetramethylbenzene, 1,2,4,5-	NE	2.2 U	2.2 U	2.2 U
Thiophene	NE	1.4 U	1.4 U	1.4 U
Trans-1,2-dichloroethene	NE	1.6 U	1.6 U	1.6 U
Trichloro-1,2,2-trifluoroethane, 1,1,2-	2.5	3.1 U	3.1 U	3.1 U
Trichlorobenzene,1,2,4-	0.4	3.0 U	3.0 U	3.0 U
Trichloroethane,1,1,1-	0.6	2.2 U	2.2 U	2.2 U
Trichloroethane,1,1,2-	0.3	2.2 U	2.2 U	2.2 U
Trichloroethene	0.4	2.2 U	2.2 U	2.2 U
Trichlorofluoromethane	5.1	1.7 J	2.0 J	1.4 J
Trimethylbenzene,1,2,3-	0.5	2.0 U	2.0 U	2.0 U
Trimethylbenzene,1,2,4-	1.9	2.0 U	0.60 J	0.76 J
Trimethylbenzene,1,3,5-	0.7	2.0 U	2.0 U	2.0 U
Trimethylpentane, 2,2,4-	0.7	1.9 U	1.9 U	1.9 U
Undecane, n-	1.5	0.66 J	0.95 J	0.72 J
Vinyl bromide	NE	1.8 U	1.8 U	1.8 U
Vinyl chloride	0.4	1.0 U	1.0 U	1.0 U
Other (%)				
Helium	NE	0.0167 U	0.0174 U	0.0187 U

Table X Analytical Soil Gas Results Hempstead Site Hempstead, New York

Notes:

ug/m³ - micrograms per cubic meter BTEX - benzene, toluene, ethylbenzene, and xylenes VOCs - volatile organic compounds

' Source: NYSDOH, October 2006. Summary of Indoor and Outdoor Levels of Volatile Organic Compounds from Fuel Oil Heated Homes reported in various locations within sampled homes in NYS, 1997-2003. Background values for naphthalene are from the NYSDOH 1997 Control Home Database presented in Table C3 of the NYSDOH 2006 Guidance.

NE - not established

Bolding indicates a detected result concentration Shading and bolding indicates that the detected concentration is above the NYSDOH guidance it was compared

to

Validation Qualifiers:

J - estimated value

U - indicates not detected to the reporting limit for organic analysis and the method detection limit for inorganic analysis

UJ - not detected at or above the reporting limit shown and the reporting limit is estimated

APPENDIX C

OXYGEN SYSTEM OPERATION & MAINTENANCE MEASUREMENTS

SYSTEM #2

D		10/0/	0010	INassau (County, Ne	ew TOIK					
Da Tin)/2010 245	-							
Weat			Cloudy	-							
Outdoor Te			0° F	-							
Inside Trailer			2° F	-							
Perform			Ryan	-							
renom	ica Dy.	WIIK	rtyun	-							
	O ₂ Gen	erator (Aiı	·Sep)				Compre	ssor (Kaesar R	Rotary Sci	rew)	
Hours			227	-	Compres	sor Tank	*		80		(psi)
Feed Air Pressu	ıre *		75	(psi)	Daliyamı		adings bel	low are made fi	rom contro 73	ol panel)	(nci)
Cycle Pressure	*		60	(psi)	Delivery Element		emperature	2	169		(psi) (°F)
Oxygen Receiv	er Pressure *			36	Running	Hours			3,784		(hours)
CAYGON RECEIV	er i ressure			(psi)	Loading				226		(hours)
				(har)		10015			220		(nours)
Oxygen Purity * maximum reading	g during loading cy	cle	91.8	(percent)	* maximum		ring loading	cycle			
	Injection Ba				Injection Ba				Injection	Bark C	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
			psi		Deptil	Sem					psi
OW-2-2	90.2'	54	15	OW-2-9S	75'	38	19	OW-2-10D	97.2'	29	43
OW-2-3	94.3'	51	15.5	OW-2-10S	75'	40	31	OW-2-11D	100.8'	29	31
OW-2-4	94.7'	48	25	OW-2-11S	76.5'	37	20	OW-2-12	94'	33	18
OW-2-5	95.3'	27	29	OW-2-13S	75'	32	17	OW-2-13D	97'	33	27
OW-2-6	95.7'	26	29	OW-2-15S	75'	50	15	OW-2-14	96.4'	46	30.5
OW-2-7	96'	30	28	OW-2-16S	75.5'	38	18	OW-2-15D	94.6'	44	29.5
OW-2-8	96.3'	30	29	OW-2-18S	74.5'	32	18	OW-2-16D	94.1'	40	26
OW-2-9D	96.7'	32	29	OW-2-20S	79'	37	22	OW-2-17	95'	44	29
Comments:	All injection point	flows were adj	usted to ~30 scf	h after collecting re	adings.						

SYSTEM #2

				O. Inje	ction Syst	em #2					
	Injection B	ank D			Injection Ba				Injection	Bank F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	22	23	OW-2-22S	76'	58	19	OW-2-26D	95'	27	26
OW-2-19	96.1'	24	29	OW-2-24S	77.8'	21	22	OW-2-27	93.5'	14	27
OW-2-20D	96.6'	24	30	OW-2-26S	74'	18	17	OW-2-28D	92.1'	16	26
OW-2-21	96.6'	22	28	OW-2-28S	76'	13	20	OW-2-29	92.2'	19	27
OW-2-22D	96.3'	23	27	OW-2-30S	67.8'	16	15	OW-2-30D	88'	14	25
OW-2-23	97.2'	17	30.5	OW-2-34	71'	95	19	OW-2-31	86'	17	30
OW-2-24D	97'	22	28	OW-2-35	69.2'	0	24	OW-2-32	84'	16	32
OW-2-25	96'	17	27	OW-2-36	64.8'	0	20	OW-2-33	82'	10	34
omments:	All injection point	t flows were adj	usted to ~30 scf	h after collecting re	-			<u> </u>			
omments:	All injection point		usted to ~30 scf	O ₂ Inje	adings. ction Syst Injection Ba		<u> </u>		Monitoring	Points Log	I
omments:			usted to ~30 scf	O ₂ Inje	ction Syst		psi	ID	Monitoring	Points Log DO (mg/L)	PID (pj
	Injection B	ank G		O ₂ Inje	ction Syst	ınk H	psi 23				PID (p)
ID	Injection B Depth	ank G scfh	psi	O ₂ Inje	ction Syst Injection Ba Depth	nk H scfh		ID	DTW	DO (mg/L)	0
ID OW-2-37	Injection B Depth 62.8'	ank G scfh 40	psi 20	O ₂ Inje	ction Syst Injection Ba Depth 61.1'	ank H scfh 31	23	ID MP-2-1	DTW 29.86	DO (mg/L) 5.95	0
ID OW-2-37 OW-2-38	Injection B Depth 62.8' 62.1'	ank G scfh 40 32	psi 20 19	O ₂ Inje	ction Syst Injection Ba Depth 61.1'	mk H scfh 31 42	23	ID MP-2-1 MP-2-2	DTW 29.86 30.91	DO (mg/L) 5.95 2.02	0 0.3 0.1
ID OW-2-37 OW-2-38 OW-2-39	Injection B Depth 62.8' 62.1' 60'	ank G scfh 40 32 53	psi 20 19 16	O ₂ Inje	ction Syst Injection Ba Depth 61.1'	mk H scfh 31 42	23	ID MP-2-1 MP-2-2 MP-2-3S	DTW 29.86 30.91 31.02	DO (mg/L) 5.95 2.02 44.25	0 0.3 0.1
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G scfh 40 32 53 40	psi 20 19 16 20	O ₂ Inje	ction Syst Injection Ba Depth 61.1'	mk H scfh 31 42	23	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D	DTW 29.86 30.91 31.02 31.25	DO (mg/L) 5.95 2.02 44.25 42.24	0 0.3 0.1 4.9 0
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G 40 32 53 40 44	psi 20 19 16 20 19	O ₂ Inje	ction Syst Injection Ba Depth 61.1'	mk H scfh 31 42	23	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	DTW 29.86 30.91 31.02 31.25 19.76	DO (mg/L) 5.95 2.02 44.25 42.24 1.65	0.3 0.1 4.9

SYSTEM #2

				Date:	10/20/2010
	OP	ERATIONAL NOTES			
GA5 Air Compressor					
1) Oil Level Checked	with system unloaded*		Yes	Х	No
* Unload system, w	ait until Delivery Air Pressur	e is less than 9 psi			
2) Oil Level with syste					
	Low (red)	Normal (green)	X High		*7
 3) Oil added 4) Oil changed 		Yes		No No	X X
5) Oil filter changed		Vec		No No	X
6) Air filter Changed		Yes Yes Yes		No	X
7) Oil separator chang	ed	Yes		No	X
8) Terminal strips che		Yes		No	Х
AS-80 O ₂ Generator					
1) Prefilter changed		Yes		No	Х
2) Coalescing changed	1	Yes		No	X
	GENH	ERAL SYSTEM NOTES			
<u>Trailer</u> 1) Performed general	housekeeping (i.e. sweep, col	lect trash inside and out et	tc)		
i) i chonned general	nousekeeping (i.e. sweep, con	Yes X)	No	
				_	
2) Abnormal condition	ns observed (e.g. vandalism)	None			
3) Other major activit	es completed				
4) Supplies needed					
5) Visitors					
Record routine activities such as	any alarm/shutdowns, sam	oling, maintenance, mate	rial		
transported off-site, oil/filter/gas	ket and/or any other abnor	mal operating conditions:			
	·	• 0			
Action Items					

SYSTEM #2

· · ·				Nassau	County, Ne	W IOIK					
Da			/2010	_							
Tin)45	_							
Weat			nny 2° F	-							
Outdoor Te			2° F 2° F	_							
Inside Trailer Perform			2° F alquecee	_							
Periorii	led by:	Jason F	aiquecee	_							
	O ₂ Gen	<mark>erator (Air</mark>	·Sep)				Compre	<mark>ssor (Kaesar R</mark>	Rotary Sci	rew)	
Hours			554	-	Compres	sor Tank	*		65		(psi)
Feed Air Pressu	ure *		37	(psi)			adings be	low are made fr		ol panel)	<i>.</i>
Cycle Pressure	*		59	(psi)	Delivery Element		emperature	e	78 171		(psi) (°F)
Oxygen Receiv	er Pressure *			4	Running	Hours			554		(hours)
				(psi)	Loading	Hours			553		(hours)
Oxygen Purity			92.4	(percent)							
* maximum reading	g during loading cy	cle				-	ring loading	cycle			
					ction Syst						
	Injection Ba				Injection Ba	ank B			Injection		
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-2	90.2'	44	23	OW-2-9S	75'	36	19	OW-2-10D	97.2'	0	52
OW-2-3	94.3'	44	12	OW-2-10S	75'	33	30	OW-2-11D	100.8'	29	31
OW-2-4	94.7'	48	33	OW-2-11S	76.5'	36	20	OW-2-12	94'	33	18
OW-2-5	95.3'	35	30	OW-2-13S	75'	32	19	OW-2-13D	97'	32	27
OW-2-6	95.7'	34	30	OW-2-15S	75'	44	14	OW-2-14	96.4'	38	28
OW-2-7	96'	35	29	OW-2-16S	75.5'	37	19	OW-2-15D	94.6'	38	29
OW-2-8	96.3'	35	30	OW-2-18S	74.5'	36	18	OW-2-16D	94.1'	36	25
OW-2-9D	96.7'	35	29	OW-2-20S	79'	37	22	OW-2-17	95'	38	29
Comments:	All injection point	flows were adj	usted to ~30 scf	h after collecting re	eadings.	1	<u> </u>	L	<u>I</u>	<u> </u>	<u> </u>

SYSTEM #2

				O ₂ Inje	ction Syst	em #2					
	Injection B	ank D			Injection Ba	ank E			Injection	ı Bank F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	33	35	OW-2-22S	76'	77	19	OW-2-26D	95'	45	39
OW-2-19	96.1'	43	29	OW-2-24S	77.8'	25	11	OW-2-27	93.5'	44	28
OW-2-20D	96.6'	40	30	OW-2-26S	74'	22	10	OW-2-28D	92.1'	37	26
OW-2-21	96.6'	39	29	OW-2-28S	76'	16	20	OW-2-29	92.2'	38	32
OW-2-22D	96.3'	41	27	OW-2-30S	67.8'	18	15	OW-2-30D	88'	44	25
OW-2-23	97.2'	44	31	OW-2-34	71'	>100	19	OW-2-31	86'	26	32
OW-2-24D	97'	43	29	OW-2-35	69.2'	0	11	OW-2-32	84'	28	32
OW-2-25	96'	40	27	OW-2-36	64.8'	13	21	OW-2-33	82'	13	35
omments:	All injection poin	t flows were adj	usted to ~30 scf	h after collecting re	-	em #2					
omments:	All injection poin	-	usted to ~30 scf	O ₂ Inje	eadings. <mark>ction Syst</mark> Injection Ba				Monitoring	Points Log	
omments:		-	usted to ~30 scf	O ₂ Inje	ction Syst		psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (p
	Injection B	ank G		O ₂ Inje	ction Syst	ink H	psi 20				PID (p 0
ID	Injection B Depth	ank G scfh	psi	O ₂ Inje	ction Syst Injection Ba Depth	nk H scfh		ID	DTW	DO (mg/L)	0
ID OW-2-37	Injection B Depth 62.8'	ank G scfh 46	psi 20	O ₂ Inje ID OW-2-45	ction Syst Injection Ba Depth 61.1'	nnk H scfh 29	20	ID MP-2-1	DTW 30.09	DO (mg/L) 6.67	0
ID OW-2-37 OW-2-38	Injection B Depth 62.8' 62.1'	ank G scfh 46 30	psi 20 19	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection Ba Depth 61.1'	mk H scfh 29 32	20	ID MP-2-1 MP-2-2	DTW 30.09 21.15	DO (mg/L) 6.67 2.18	0
ID OW-2-37 OW-2-38 OW-2-39	Injection B Depth 62.8' 62.1' 60'	ank G scfh 46 30 30	psi 20 19 14	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection Ba Depth 61.1'	mk H scfh 29 32	20	ID MP-2-1 MP-2-2 MP-2-3S	DTW 30.09 21.15 31.28	DO (mg/L) 6.67 2.18 40.05	0.2
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G scfh 46 30 30 32	psi 20 19 14 19	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection Ba Depth 61.1'	mk H scfh 29 32	20	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D	DTW 30.09 21.15 31.28 31.56	DO (mg/L) 6.67 2.18 40.05 44.65	0.2
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G 30 30 32 34	psi 20 19 14 19 19 19	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection Ba Depth 61.1'	mk H scfh 29 32	20	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	DTW 30.09 21.15 31.28 31.56 19.63	DO (mg/L) 6.67 2.18 40.05 44.65 14.6	0.2

SYSTEM #2

I			Date:	11/3/2010
	OPERATIONAL NOT	ES		
GA5 Air Com				
1)	Oil Level Checked with system unloaded*	Yes	Х	No
	* Unload system, wait until Delivery Air Pressure is less than 9 psi			
2)	Oil Level with system unloaded	-) V	II'sh (stopped)	
3)	Low (red) Normal (green Oil added Yes	1) <u> </u>	High (orange)No	X
· · · · · · · · · · · · · · · · · · ·	Oil changed Yes		No	X
	Oil filter changed Yes		No	X
6)	Air filter Changed Yes		No	Х
	Air filter ChangedYesOil separator changedYes		No	Х
8)	Terminal strips checked Yes		No	X
AS-80 O2 Gen	erator			
-	Prefilter changed Yes		No	X
	Coalescing changed Yes		No	X
	GENERAL SYSTEM NO	TES		
	Performed general housekeeping (i.e. sweep, collect trash inside and Yes X Abnormal conditions observed (e.g. vandalism) <u>None</u>	out, etc.)	No_	
3)	Other major activities completed			
4)	Supplies needed			
5)	Visitors			
transported of The alarm cond automatically v 24 and the syst	the activities such as any alarm/shutdowns, sampling, maintenance, ff-site, oil/filter/gasket and/or any other abnormal operating condi dition observed on 10-24-10 was caused by an unknown power failure when power is restored. As such, we utilized the remote access system teem was fully operational. There is no wayy to determine exactly when ceived from the remote access system the alarm resulted in minimal do	itions: at approximate to check the s the power wa	status of the syste	m at approximatley noon on 10

SYSTEM #2

5				Trassau (County, Ne	W IOIK					
Da			7/2010	-							
Tin Weat			331	-							
			nny 5° F	-							
Outdoor Te Inside Trailer			2° F	-							
Perform			2 IV Ryan	-							
I CHOIN	icu by.	WIIK	, Kyan	-							
	O ₂ Gen	erator (Air	:Sep)				Compre	ssor (Kaesar H	Rotary Sci	rew)	
Hours			887		Compres	sor Tank	*		74		(psi)
				-	1						ч, ,
Feed Air Pressu	ıre *		65	(psi)	Delivery		adings be	low are made fi	rom contro 109	ol panel)	(psi)
Cycle Pressure	*		68	(psi)	-		mperature	2	169		(^o F)
Oxygen Receiv	er Pressure *			18	Running	Hours			890		(hours)
				(psi)	Loading				887		(hours)
										•	
Oxygen Purity			91.5	(percent)							
* maximum reading	g during loading cy	cle		_	* maximun	n reading du	ring loading	cycle			
				O ₂ Inje	ction Syst	em #2					
	Injection Ba	nk A			Injection Ba	ank B			Injection	Bank C	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-2	90.2'	42	24	OW-2-9S	75'	22	19	OW-2-10D	97.2'	35	42
OW-2-3	94.3'	38	29	OW-2-10S	75'	28	29	OW-2-11D	100.8'	48	31
OW-2-4	94.7'	41	26	OW-2-11S	76.5'	24	21	OW-2-12	94'	38	19
OW-2-5	95.3'	24	28	OW-2-13S	75'	28	18	OW-2-13D	97'	23	27
OW-2-6	95.7'	25	28	OW-2-15S	75'	35	26	OW-2-14	96.4'	55	28
OW-2-7	96'	25	27	OW-2-16S	75.5'	25	18	OW-2-15D	94.6'	58	28
OW-2-8	96.3'	25	27	OW-2-18S	74.5'	23	18	OW-2-16D	94.1'	45	26
OW-2-9D	96.7'	25	28	OW-2-20S	79'	26	23	OW-2-17	95'	52	27
Comments:	All injection point	flows were adj	usted to ~30 scf	h after collecting re	eadings.						

SYSTEM #2

				O ₂ Inje	ction Syst	em #2					
	Injection B	ank D			Injection Ba	ank E			Injection	Bank F	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	43	31	OW-2-22S	76'	30	19	OW-2-26D	95'	68	39
OW-2-19	96.1'	23	28	OW-2-24S	77.8'	32	18	OW-2-27	93.5'	38	28
OW-2-20D	96.6'	27	29	OW-2-268	74'	32	17	OW-2-28D	92.1'	23	27
OW-2-21	96.6'	30	28	OW-2-28S	76'	30	21	OW-2-29	92.2'	42	27
OW-2-22D	96.3'	30	28	OW-2-308	67.8'	25	16	OW-2-30D	88'	22	27
OW-2-23	97.2'	44	28	OW-2-34	71'	28	19	OW-2-31	86'	35	30
OW-2-24D	97'	30	27	OW-2-35	69.2'	23	26	OW-2-32	84'	30	32
OW-2-25	96'	40	32	OW-2-36	64.8'	28	21	OW-2-33	82'	25	34
omments:	All injection poin	t flows were adj	usted to ~30 scf	h after collecting re	-	em #2					
omments:	All injection poin		usted to ~30 scf	O ₂ Inje	eadings. <mark>ction Syst</mark> Injection Ba				Monitoring	Points Log	
omments:			usted to ~30 scf	O ₂ Inje	ction Syst		psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (p
	Injection B	ank G		O ₂ Inje	ction Syst	ınk H	psi 20				
ID	Injection B Depth	ank G scfh	psi	O ₂ Inje	ction Syst Injection Ba Depth	nk H scfh		ID	DTW	DO (mg/L)	0.1
ID OW-2-37	Injection B Depth 62.8'	ank G scfh 40	psi 19	O ₂ Inje ID OW-2-45	ction Syst Injection Ba Depth 61.1'	nk H scfh 25	20	ID MP-2-1	DTW 30.12	DO (mg/L) 11.77	0.1
ID OW-2-37 OW-2-38	Injection B Depth 62.8' 62.1'	ank G scfh 40 32	psi 19 18	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 25 21	20	ID MP-2-1 MP-2-2	DTW 30.12 31.22	DO (mg/L) 11.77 5.2	0.1
ID OW-2-37 OW-2-38 OW-2-39	Injection B Depth 62.8' 62.1' 60'	ank G scfh 40 32 38	psi 19 18 18	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 25 21	20	ID MP-2-1 MP-2-2 MP-2-3S	DTW 30.12 31.22 31.32	DO (mg/L) 11.77 5.2 47.24	0.1 0.2 0.3 2.3
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G scfh 40 32 38 24	psi 19 18 18 18	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 25 21	20	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D	DTW 30.12 31.22 31.32 31.53	DO (mg/L) 11.77 5.2 47.24 45.87	0.1 0.2 0.3 2.3 1.1
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G 32 38 24 27	psi 19 18 18 18 19 18	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 25 21	20	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	DTW 30.12 31.22 31.32 31.53 20.05	DO (mg/L) 11.77 5.2 47.24 45.87 46.29	PID (p 0.1 0.2 0.3 2.3 1.1 0.5

SYSTEM #2

		Date:	11/17/2010
	OPERATIONAL NOTES		
GA5 Air Com			
1)	Oil Level Checked with system unloaded* * Unload system, wait until Delivery Air Pressure is less than 9 psi	Yes X	No
	Oil Level with system unloaded Low (red) X Normal (green)	High (orange)	
	Oil added Yes X Oil changed Yes	No No	
	Oil filter changed Yes	No	
	Oil filter changed Yes Air filter Changed Yes Oil serventer changed Yes	No	
	On separator changed fes	No	X
8)	Terminal strips checked Yes X	No	
AS-80 O ₂ Gen	erator		
	Prefilter changed Yes Coalescing changed Yes	No	
2)	Coalescing changed Yes	No	X
	GENERAL SYSTEM NOTES		
	Performed general housekeeping (i.e. sweep, collect trash inside and out, et Yes X Abnormal conditions observed (e.g. vandalism) Low Oil	tc.) No	
3)	Other major activities completed Small Oxygen leak at Injection Ban	ık C.	
4)	Supplies needed		
5)	Visitors		
transported of Found oil level	e activities such as any alarm/shutdowns, sampling, maintenance, mater ff-site, oil/filter/gasket and/or any other abnormal operating conditions: low in air compressor. Shut down system, took apart unit and tightened sig n. Found a small oxygen leak on injection bank C, tightened fitting and will	: ght glass and oil feed lin	e. Added oil to unit and

SYSTEM #2

Feed Air Pressure * 70 (psi) (readings below are made from control panel) Cycle Pressure * 60 (psi) Delivery Air 91 (psi) Dargen Receiver Pressure * 110 Running Hours 1,245 (hours) (psi) (psi) Loading Hours 1,242 (hours)	Time: Weather: Outdoor Temperature: Inside Trailer Temperature:	12	/2010									
Weather: Outdoor Temperature: Performed By: Sumy -435°F -72°F Mike Ryan Sumy -435°F Joinsde Trailer Temperature: Performed By: $-435°F$ Mike Ryan Compressor (Kaesar Rotary Screw) (psi) Jours $1,243$ Compressor Tark * 80 (psi) Seed Air Pressure * -70 (psi) (psi) (readings below are made from control panel) 	Weather: Outdoor Temperature: Inside Trailer Temperature:		N 4 1	_								
Outdoor Temperature: Inside Trailer Temperature: Performed By: -45° F -72° P Mike Ryan O: Generator (AirSep) Compressor (Kaesar Rotary Screw) Hours 1.243 70 (psi) Compressor Tank * 80 (psi) Feed Air Pressure * 0 (psi) Compressor Tank * 80 (psi) Delivery Air P110 Running Hours 1.245 (hours) Dygen Purity 90.2 (percent) * 1.245 (hours) Daysen Purity 90.2 (percent) * 1.245 (hours) O 0 0<	Outdoor Temperature: Inside Trailer Temperature:	0		_								
Inside Teingerature: 72° F Mike Ryan O. Generator (AirSep Compressor (Kaesar Kotary Screw) Hours 1.243 Compressor Tank * 80 (psi) Paced Air Pressure * 70 (psi) Compressor Tank * 80 (psi) Cycle Pressure * 60 (psi) Element Outlet Temperature 91 (psi) (psi) Compressor Jank * 91 (psi) (psi) Compressor Tank * 80 (psi) Compressor Tank * 80 (psi) Compressor Jank * 91 (psi) Compressor Tank * 91 (psi) Compressor Jank * 91 (psi) Compressor Jank * 91 (psi) State	Inside Trailer Temperature:			-								
Performed By: Mike Ryan O.g. Generator (AirSep) Compressor (Kaesar Rotary Screw) Hours 1,243 Compressor Tank * 80 (psi) "ceed Air Pressure * 70 (psi) Compressor Tank * 80 (psi) Screed Air Pressure * 60 (psi) Compressor Tank * 91 (psi) (psi) Cycle Pressure * 60 (psi) Running Hours 1,245 (hours) (psi) Cycle Pressure * 90.2 (percent) Running Hours 1,245 (hours) Cycle Pressure * 90.2 (percent) $y_{maximum reading during loading cycle 1,245 (hours) Cycle Pressure * 90.2 (percent) y_{maximum reading during loading cycle 1,245 (hours) Cycle Pressure * 90.2 (percent) y_{maximum reading during loading cycle 1,242 (hours) Cycle Pressure * 90.2 (percent) y_{maximum reading during loading cycle 1,245 (hours) Cycle Pressure * 90.2 (percent) y_{maximum reading during loading cycle y_{maximum reading during loading cycle y_{maximum reading du$				-								
Compressor (Kaesar Rotary Screw) Hours 1.243 Compressor Tank * 80 (psi) Feed Air Pressure * 70 (psi) (readings below are made from control panel) p1 (psi) Cycle Pressure * 60 (psi) Element Outlet Temperature 91 (psi) Cycle Pressure * 60 (psi) Element Outlet Temperature 1.245 (hours) Dxygen Receiver Pressure * 90.2 (percent) Running Hours 1.245 (hours) Dxygen Purity 90.2 (percent) ************************************				-								
Hours 1,243 Compressor Tank * 80 (psi) Feed Air Pressure * 70 (psi) (readings below are made from control panel) Delivery Air 91 (psi) Cycle Pressure * 60 (psi) Element Outlet Temperature 91 (psi) Cycle Pressure * 90.2 (percent) Running Hours 1,245 (hours) Cycle Pressure * 90.2 (percent) * 1,245 (hours) Cycle Pressure * 90.2 (percent) * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * * 1,245 (hours) Cycle Pressure * 90.2 (percent) *	renonned by:	Mike	e Ryan	-								
Hours 1,243 Compressor Tank * 80 (psi) Feed Air Pressure * 70 (psi) (readings below are made from control panel) Delivery Air 91 (psi) Cycle Pressure * 60 (psi) Element Outlet Temperature 91 (psi) Cycle Pressure * 90.2 (percent) Running Hours 1,245 (hours) Cycle Pressure * 90.2 (percent) * 1,245 (hours) Cycle Pressure * 90.2 (percent) * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * * 1,245 (hours) Cycle Pressure * 90.2 (percent) * * * 1,245 (hours) Cycle Pressure * 90.2 (percent) *	O ₂ Ge	nerator (Ai	:Sep)				Compre	ssor (Kaesar F	Rotary Sci	rew)		
Feed Air Pressure * 70 (psi) (readings below are made from control panel) point (psi)							<u> </u>					
Cycle Pressure * 60 (psi) Delivery Air Element Outlet Temperature 91 (psi) (psi) Oxygen Receiver Pressure * 110 Running Hours Loading Hours 1.245 (hours) Oxygen Purity maximum reading during loading cycle 90.2 (percent) $naximum reading during loading cycle 1.245 (hours) Oxygen Purity maximum reading during loading cycle One of the serie of the s$	Hours		1,243	_	Compres	sor Tank	*		80		(psi)	
Cycle Pressure * 60 (psi) Delivery Air Element Outlet Temperature 91 (psi) (psi) Oxygen Receiver Pressure * 110 Running Hours Loading Hours 1.245 (hours) Oxygen Purity maximum reading during loading cycle 90.2 (percent) $naximum reading during loading cycle 1.245 (hours) Oxygen Purity maximum reading during loading cycle One of the serie of the s$	Feed Air Pressure *		70	(psi)		(re	adings bel	low are made fi	rom contro	ol panel)		
Cycle Pressure * 60 (psi) Element Outlet Temperature 169 (°F) Dxygen Receiver Pressure * 110 Running Hours (psi) Running Hours Loading Hours 1,245 (hours) Dxygen Purity maximum reading during loading cycle 90.2 (percent) ************************************				_ · ·	Delivery		U			1	(psi)	
(psi) Loading Hours 1,242 (hours) (psi) Loading Hours 1,242 (hours) Daygen Purity 90.2 (percent) $*$ maximum reading during loading cycle O2 Injection Bank C D Dayte Injection Bank C Injection Bank C Injection Bank C OW-2-2 90.2 (44 19 OW-2-9 75' 36 19 OW-2-10S 75' 36 19 OW-2-10S 75' 36 19 OW-2-10S 75' 36 19 OW-2-10S 75' 36 19 OW-2-11D 100.8' 38 30 36 19 OW-2-11D 100.8' 38 30 30 19 OW-2-11D 100.8' <th colspa<="" td=""><td>Cycle Pressure *</td><td></td><td>60</td><td>(psi)</td><td>Element</td><td>Outlet Te</td><td>mperature</td><td>•</td><td>169</td><td></td><td></td></th>	<td>Cycle Pressure *</td> <td></td> <td>60</td> <td>(psi)</td> <td>Element</td> <td>Outlet Te</td> <td>mperature</td> <td>•</td> <td>169</td> <td></td> <td></td>	Cycle Pressure *		60	(psi)	Element	Outlet Te	mperature	•	169		
(psi) Loading Hours 1,242 (hours) (psi) Loading Hours 1,242 (hours) Daygen Purity 90.2 (percent) $*$ maximum reading during loading cycle O2 Injection Bank C D Dayte Injection Bank C Injection Bank C Injection Bank C OW-2-2 90.2 (44 19 OW-2-9 75' 36 19 OW-2-10S 75' 36 19 OW-2-10S 75' 36 19 OW-2-10S 75' 36 19 OW-2-10S 75' 36 19 OW-2-11D 100.8' 38 30 36 19 OW-2-11D 100.8' 38 30 30 19 OW-2-11D 100.8' <th colspa<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td>											
Drygen Purity $\stackrel{-90.2}{}_{\text{maximum reading during loading cycle \stackrel{-90.2}{}_{\text{(percent)}} * maximum reading during loading cycle O_2 Injection Bark A O_2 Injection Bark B Injection Bark C Injection Bark A O_2 Injection Bark B Injection Bark C Injection Bark A OV-2-02 O_2 O_2 O_2 O_2 O_2 Injection Bark A Injection Bark A O_2 O_2$ O_2 O_2	Oxygen Receiver Pressure *			110	-				1,245		(hours)	
* maximum reading during loading cycle • maximum reading during loading cycle O2 Injection System #2 Injection Bark A Injection Bark C Injection Bark A Injection Bark C OW-2-2 90.2' 44 19 OW-2-9S 75' 36 19 OW-2-10D 97.2' 66 46 OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27				(psi)	Loading	Hours			1,242		(hours)	
* maximum reading during loading cycle • maximum reading during loading cycle O2 Injection System #2 Injection Bark A Injection Bark C Injection Bark A Injection Bark C OW-2-2 90.2' 44 19 OW-2-9S 75' 36 19 OW-2-10D 97.2' 66 46 OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27												
* maximum reading during loading cycle • maximum reading during loading cycle O2 Injection System #2 Injection Bark A Injection Bark C Injection Bark A Injection Bark C OW-2-2 90.2' 44 19 OW-2-9S 75' 36 19 OW-2-10D 97.2' 66 46 OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27												
* maximum reading during loading cycle • maximum reading during loading cycle O2 Injection System #2 Injection Bark A Injection Bark C Injection Bark A Injection Bark C OW-2-2 90.2' 44 19 OW-2-9S 75' 36 19 OW-2-10D 97.2' 66 46 OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27												
O2 Injection System #2 Injection Bark A Image: Injection Bark C ID Depth scfh psi ID Depth scfh psi ID Depth scfh psi OW-2-2 90.2' 44 19 OW-2-9S 75' 36 19 OW-2-10D 97.2' 66 46 OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-13S 75' 35 19 OW-2-12D 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97.4' 32 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27	Oxygen Purity		90.2	(percent)								
Injection Bark A Injection Bark A Injection Bark A Injection Bark A Injection Bark C ID Depth scfh psi OW-2-2 90.2' 44 19 OW-2-9S 75' 36 19 OW-2-10D 97.2' 66 46 OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-5 95.3' 32 29 OW-2-15S 75' 49		cycle			* maximum	n reading du	ring loading	cycle				
IDDepthscfhpsiIDDepthscfhpsiIDDepthscfhpsi $OW-2-2$ 90.2'4419 $OW-2-9S$ 75'3619 $OW-2-10D$ 97.2'6646 $OW-2-3$ 94.3'6521 $OW-2-10S$ 75'3529 $OW-2-11D$ 100.8'3830 $OW-2-4$ 94.7'4524 $OW-2-11S$ 76.5'3519 $OW-2-12$ 94'4219 $OW-2-5$ 95.3'3029 $OW-2-13S$ 75'3018 $OW-2-13D$ 97'1526 $OW-2-6$ 95.7'3229 $OW-2-15S$ 75'4918 $OW-2-14$ 96.4'3227				O ₂ Inje	ction Syst	em #2						
OW-2-2 90.2' 44 19 OW-2-9S 75' 36 19 OW-2-10D 97.2' 66 46 OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27	Injection B	ank A			Injection Ba							
OW-2-3 94.3' 65 21 OW-2-10S 75' 35 29 OW-2-11D 100.8' 38 30 OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27						-			1			
OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27	ID Depth	scfh	psi	ID		-	psi	ID	1		psi	
OW-2-4 94.7' 45 24 OW-2-11S 76.5' 35 19 OW-2-12 94' 42 19 OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27				, 	Depth	scfh			Depth	scfh		
OW-2-5 95.3' 30 29 OW-2-13S 75' 30 18 OW-2-13D 97' 15 26 OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27	OW-2-2 90.2'	44	19	OW-2-9S	Depth 75'	scfh 36	19	OW-2-10D	Depth 97.2'	scfh 66	46	
OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27	OW-2-2 90.2'	44	19	OW-2-9S	Depth 75'	scfh 36	19	OW-2-10D	Depth 97.2'	scfh 66	46	
OW-2-6 95.7' 32 29 OW-2-15S 75' 49 18 OW-2-14 96.4' 32 27	OW-2-2 90.2' OW-2-3 94.3'	44 65	19 21	OW-2-9S OW-2-10S	Depth 75' 75'	sefh 36 35	19 29	OW-2-10D OW-2-11D	Depth 97.2' 100.8'	scfh 66 38	46	
	OW-2-2 90.2' OW-2-3 94.3'	44 65	19 21	OW-2-9S OW-2-10S	Depth 75' 75'	sefh 36 35	19 29	OW-2-10D OW-2-11D	Depth 97.2' 100.8'	scfh 66 38	46	
	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7'	44 65 45	19 21 24	OW-2-98 OW-2-108 OW-2-118	Depth 75' 75' 75' 75'	scfh 36 35 35	19 29 19	OW-2-10D OW-2-11D OW-2-12	Depth 97.2' 100.8' 94'	scfh 66 38 42	46 30 19	
OW-2-7 96' 32 28 OW-2-16S 75.5' 38 18 OW-2-15D 94.6' 32 29	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3'	44 65 45 30	19 21 24 29	OW-2-9S OW-2-10S OW-2-11S OW-2-13S	Depth 75' 75' 75' 76.5' 75'	scfh 36 35 35 30	19 29 19 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D	Depth 97.2' 100.8' 94' 97'	scfh 66 38 42 15	46 30 19 26	
	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3'	44 65 45 30	19 21 24 29	OW-2-9S OW-2-10S OW-2-11S OW-2-13S	Depth 75' 75' 75' 76.5' 75'	scfh 36 35 35 30	19 29 19 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D	Depth 97.2' 100.8' 94' 97'	scfh 66 38 42 15	46 30 19 26	
	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3' OW-2-6 95.7'	44 65 45 30 32	19 21 24 29 29	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S	Depth 75' 75' 76.5' 75' 75'	scfh 36 35 35 30 49	19 29 19 18 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14	Depth 97.2' 100.8' 94' 97' 96.4'	scfh 66 38 42 15 32	46 30 19 26 27	
OW-2-8 96.3' 35 29 OW-2-18S 74.5' 38 18 OW-2-16D 94.1' 32 26	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3' OW-2-6 95.7'	44 65 45 30 32	19 21 24 29 29	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S	Depth 75' 75' 76.5' 75' 75'	scfh 36 35 35 30 49	19 29 19 18 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14	Depth 97.2' 100.8' 94' 97' 96.4'	scfh 66 38 42 15 32	46 30 19 26 27	
	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3' OW-2-6 95.7' OW-2-7 96'	44 65 45 30 32 32 32	19 21 24 29 29 28	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S	Depth 75' 75' 76.5' 75' 75' 75' 75' 75' 75' 75'	scfh 36 35 35 30 49 38	19 29 19 18 18 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	Depth 97.2' 100.8' 94' 97' 96.4' 94.6'	scfh 66 38 42 15 32 32	46 30 19 26 27 29	
OW-2-9D 96.7' 30 29 OW-2-20S 79' 39 22 OW-2-17 95' 30 28	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3' OW-2-6 95.7' OW-2-7 96' OW-2-8 96.3'	44 65 45 30 32 32 35	19 21 24 29 29 28 29	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S OW-2-18S	Depth 75' 75' 76.5' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75.5' 74.5'	scfh 36 35 35 30 49 38 38	19 29 19 18 18 18 18 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-13D OW-2-14 OW-2-15D OW-2-16D	Depth 97.2' 100.8' 94' 97' 96.4' 94.6' 94.1'	scfh 66 38 42 15 32 32 32 32 32	46 30 19 26 27 29 26	
	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3' OW-2-6 95.7' OW-2-7 96' OW-2-8 96.3'	44 65 45 30 32 32 32	19 21 24 29 29 28	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S	Depth 75' 75' 76.5' 75' 75' 75' 75' 75' 75' 75'	scfh 36 35 35 30 49 38	19 29 19 18 18 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-14 OW-2-15D	Depth 97.2' 100.8' 94' 97' 96.4' 94.6'	scfh 66 38 42 15 32 32 32 32 32	46 30 19 26 27 29	
Comments: All injection point flows were adjusted to ~30 scfh after collecting readings.	OW-2-2 90.2' OW-2-3 94.3' OW-2-4 94.7' OW-2-5 95.3' OW-2-6 95.7' OW-2-7 96' OW-2-8 96.3' OW-2-9D 96.7'	44 65 45 30 32 32 35 30	19 21 24 29 29 28 29	OW-2-9S OW-2-10S OW-2-11S OW-2-13S OW-2-15S OW-2-16S OW-2-18S OW-2-20S	Depth 75' 75' 76.5' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75' 75.5' 74.5' 79'	scfh 36 35 35 30 49 38 38	19 29 19 18 18 18 18 18	OW-2-10D OW-2-11D OW-2-12 OW-2-13D OW-2-13D OW-2-14 OW-2-15D OW-2-16D	Depth 97.2' 100.8' 94' 97' 96.4' 94.6' 94.1'	scfh 66 38 42 15 32 32 32 32 32	46 30 19 26 27 29 26	

SYSTEM #2

				O ₂ Inje	ction Syst	em #2					
		Injection Ba	ank E		Injection Bank F						
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	58	30	OW-2-22S	76'	38	18	OW-2-26D	95'	40	30
OW-2-19	96.1'	38	29	OW-2-24S	77.8'	54	19	OW-2-27	93.5'	40	28
OW-2-20D	96.6'	35	30	OW-2-26S	74'	45	17	OW-2-28D	92.1'	40	28
OW-2-21	96.6'	36	28	OW-2-28S	76'	31	20	OW-2-29	92.2'	62	27
OW-2-22D	96.3'	35	27	OW-2-30S	67.8'	33	16	OW-2-30D	88'	44	27
OW-2-23	97.2'	43	31	OW-2-34	71'	40	18	OW-2-31	86'	64	40
OW-2-24D	97'	40	28	OW-2-35	69.2'	40	32	OW-2-32	84'	52	44
OW-2-25	96'	50	33	OW-2-36	64.8'	32	20	OW-2-33	82'	41	37
omments:	All injection poin	t flows were adj	usted to ~30 sct	h after collecting re	-	em #2					
omments:	All injection poin		usted to ~30 scl	O ₂ Inje	eadings. ction Syst Injection Ba				Monitoring	Points Log	
mments:			usted to ~30 sci	O ₂ Inje	ction Syst		psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (p
	Injection B	ank G		O ₂ Inje	ction Syst	ank H	psi 20				PID (p) 0.1
ID	Injection B Depth	ank G scfh	psi	O ₂ Inje	ction Syst Injection Ba Depth	ank H scfh		ID	DTW	DO (mg/L)	0.1
ID OW-2-37	Injection B Depth 62.8'	ank G scfh 42	psi 19	O ₂ Inje ID OW-2-45	ction Syst Injection Ba Depth 61.1'	ank H scfh 40	20	ID MP-2-1	DTW 30.36	DO (mg/L) 9.77	
ID OW-2-37 OW-2-38	Injection B Depth 62.8' 62.1'	ank G scfh 42 40	psi 19 18	O ₂ Inje	ction Syst Injection Ba Depth 61.1' 61'	mk H scfh 40 47	20	ID MP-2-1 MP-2-2	DTW 30.36 31.44	DO (mg/L) 9.77 45.78	0.1 0.1 0.1
ID OW-2-37 OW-2-38 OW-2-39	Injection B Depth 62.8' 62.1' 60'	ank G scfh 42 40 54	psi 19 18 17	O ₂ Inje	ction Syst Injection Ba Depth 61.1' 61'	mk H scfh 40 47	20	ID MP-2-1 MP-2-2 MP-2-3S	DTW 30.36 31.44 31.54	DO (mg/L) 9.77 45.78 48.52	0.1 0.1 0.1 0.2
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G scfh 42 40 54 42	psi 19 18 17 19	O ₂ Inje	ction Syst Injection Ba Depth 61.1' 61'	mk H scfh 40 47	20	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D	DTW 30.36 31.44 31.54 31.75	DO (mg/L) 9.77 45.78 48.52 45.67	0.1 0.1 0.2 0.6
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G 300 42 40 54 42 50	psi 19 18 17 19 19 19	O ₂ Inje	ction Syst Injection Ba Depth 61.1' 61'	mk H scfh 40 47	20	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	DTW 30.36 31.44 31.54 31.75 20.28	DO (mg/L) 9.77 45.78 48.52 45.67 45.37	0.1

SYSTEM #2

		Date:	12/2/2010
	ODEDATIONAL NOTES		
GA5 Air Compressor	OPERATIONAL NOTES		
1) Oil Level Checked with system unloaded*		Yes X	No
* Unload system, wait until Delivery Air Pres	ssure is less than 9 psi		
2) Oil Level with system unloaded	_		
Low (red)	Normal (green)	X High (orange)	
3) Oil added	Yes		X
4) Oil changed	Yes		X
5) Oil filter changed	Yes	No	
6) Air filter Changed	Yes	No No	
7) Oil separator changed8) Terminal strips checked	Yes Yes Yes Yes Yes Yes Yes Yes	No No	
8) Terminal surps checked		110	
AS-80 O ₂ Generator			
1) Prefilter changed	Yes Yes	No	X
2) Coalescing changed	Yes	No	X
G	ENERAL SYSTEM NOTES	3	
Trailer 1) Performed general housekeeping (i.e. sweep, 2) Abnormal conditions observed (e.g. vandalisity)	Yes X	etc.) No	
3) Other major activities completed			
4) Supplies needed			
5) Visitors			
Record routine activities such as any alarm/shutdowns, sa transported off-site, oil/filter/gasket and/or any other abr			
Cleaned up leaves within fence area.			
Action Items			

SYSTEM #2

-				Nassau	County, Ne	ew fork					
Date: <u>12/16/2010</u>				-							
Time: 1218				-							
Weather:SunnyOutdoor Temperature:~36° F				-							
	-										
Inside Trailer Temperature: ~72° F											
Performed By: Mike Ryan											
	Compressor (Kaesar Rotary Screw)										
Hours	_	Compres	sor Tank	*		70		(psi)			
Feed Air Pressu	ıre *		50	(psi)			adings be	low are made fr		ol panel)	
Cycle Pressure	*		70	(psi)	Delivery Element		mperature	e	125 171		(psi) (°F)
Oxygen Receive	ar Draccura *			95	Running	Hours			1,577		(hours)
Oxygen Kecelv					-						. ,
				(psi)	Loading	nours			1,580		(hours)
Oxygen Purity * maximum reading	g during loading cy	cle	91.1	(percent)	* maximum		ring loading	cycle			
	Injection Ba	nk A			Injection Ba				Injection	Bank C	
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-2	90.2'	42	19	OW-2-9S	75'	38	19	OW-2-10D	97.2'	40	36
OW-2-3	94.3'	58	22	OW-2-10S	75'	35	29	OW-2-11D	100.8'	40	31
OW-2-4	94.7'	42	23	OW-2-11S	76.5'	40	21	OW-2-12	94'	50	19
OW-2-5	95.3'	40	28	OW-2-13S	75'	32	18	OW-2-13D	97'	20	26
OW-2-6	95.7'	40	29	OW-2-15S	75'	52	18	OW-2-14	96.4'	35	27
OW-2-7	96'	42	29	OW-2-16S	75.5'	35	19	OW-2-15D	94.6'	35	28
OW-2-8	96.3'	40	29	OW-2-18S	74.5'	35	18	OW-2-16D	94.1'	40	25
OW-2-9D	96.7'	40	29	OW-2-20S	79'	40	24	OW-2-17	95'	32	28
Comments:	All injection point	flows were adj	usted to ~30 scf	h at Injection Bank	B and to ~ 50) scfh at Inje	ection Banks	A & C after collec	ting readings	5.	

SYSTEM #2

				O ₂ Inje	ction Syst	em #2					
		Injection Ba	ank E		Injection Bank F						
ID	Depth	scfh	psi	ID	Depth	scfh	psi	ID	Depth	scfh	psi
OW-2-18D	95.5'	60	34	OW-2-22S	76'	40	18	OW-2-26D	95'	38	29
OW-2-19	96.1'	35	28	OW-2-24S	77.8'	45	18	OW-2-27	93.5'	35	28
OW-2-20D	96.6'	32	29	OW-2-26S	74'	40	17	OW-2-28D	92.1'	32	27
OW-2-21	96.6'	38	28	OW-2-28S	76'	35	20	OW-2-29	92.2'	47	24
OW-2-22D	96.3'	32	27	OW-2-30S	67.8'	32	16	OW-2-30D	88'	47	27
OW-2-23	97.2'	50	27	OW-2-34	71'	40	18	OW-2-31	86'	60	38
OW-2-24D	97'	35	28	OW-2-35	69.2'	40	33	OW-2-32	84'	62	43
OW-2-25	96'	52	28	OW-2-36	64.8'	35	21	OW-2-33	82'	50	35
	F	t nows were auj		h after collecting re	-	om #2					
	Injection B			O ₂ Inje	ction Syst				Monitoring	Points Log	
ID			psi	O ₂ Inje	ction Syst		psi	ID	Monitoring DTW	Points Log DO (mg/L)	PID (p
	Injection B	ank G		O ₂ Inje	ction Syst	ınk H	psi 18				PID (p 0
ID	Injection B Depth	ank G scfh	psi	O ₂ Inje	ction Syst Injection Ba Depth	nk H scfh		ID	DTW	DO (mg/L)	0
ID OW-2-37	Injection B Depth 62.8'	ank G scfh 35	psi 19	O ₂ Inje ID OW-2-45	ction Syst Injection Ba Depth 61.1'	ank H scfh 40	18	ID MP-2-1	DTW 30.40	DO (mg/L) 15.14	PID (pp 0 0.1
ID OW-2-37 OW-2-38	Injection B Depth 62.8' 62.1'	ank G scfh 35 32	psi 19 18	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 40 40	18	ID MP-2-1 MP-2-2	DTW 30.40 31.47	DO (mg/L) 15.14 27.15	0 0.1 0.1
ID OW-2-37 OW-2-38 OW-2-39	Injection B Depth 62.8' 62.1' 60'	ank G scfh 35 32 38	psi 19 18 17	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 40 40	18	ID MP-2-1 MP-2-2 MP-2-3S	DTW 30.40 31.47 31.60	DO (mg/L) 15.14 27.15 41.54	0.1
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G scfh 35 32 38 33	psi 19 18 17 18	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 40 40	18	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D	DTW 30.40 31.47 31.60 31.77	DO (mg/L) 15.14 27.15 41.54 47.14	0.1
ID OW-2-37 OW-2-38 OW-2-39 OW-2-40 OW-2-41	Injection B Depth 62.8' 62.1' 60' 61.7'	ank G scfh 35 32 38 33 35 35	psi 19 18 17 18 18 18	O ₂ Inje ID OW-2-45 OW-2-46	ction Syst Injection B2 Depth 61.1' 61'	mk H scfh 40 40	18	ID MP-2-1 MP-2-2 MP-2-3S MP-2-3D MP-2-4	DTW 30.40 31.47 31.60 31.77 20.31	DO (mg/L) 15.14 27.15 41.54 47.14 44.41	0 0.1 0.1 0.1

SYSTEM #2

Hempstead Intersection Street Former MGP Site Nassau County, New York

			Date:	12/16/2010
	OPERATIONAL NOTES			
GA5 Air Compressor				
1) Oil Level Checked with system unloaded*		Yes	Х	No
* Unload system, wait until Delivery Air P	ressure is less than 9 psi			
2) Oil Level with system unloaded Low (red)	X Normal (green)	Hig	h (orange)	
3) Oil added	Yes X			
4) Oil changed	Yes		No	X
5) Oil filter changed	Yes			Х
6) Air filter Changed	Yes X Yes Yes Yes Yes Yes Yes X		No	X
7) Oil separator changed	Yes		No	
8) Terminal strips checked	Yes X		No	
AS-80 O ₂ Generator				
1) Prefilter changed	Yes Yes		No	X
2) Coalescing changed	Yes		No	X X
	GENERAL SYSTEM NOTES			
<u>Trailer</u>				
1) Performed general housekeeping (i.e. swee		c.)	N.	
	Yes X		No	
2) Abnormal conditions observed (e.g. vandal	lism)			
3) Other major activities completed				
4) Supplies needed				
4) Suppries needed				
5) Visitors				
Record routine activities such as any alarm/shutdowns		rial		
transported off-site, oil/filter/gasket and/or any other a	abnormal operating conditions:			
Added small amount of oil to air compressor. Emptied wa	este connister of oil & water from	auto drain v	alvec	
Added small amount of on to an compressor. Emptied wa		auto urani v	arves.	
Action Items				